
VCP-NT Reference Guide

Part Number: VCP/VCP2 - NT

Revision Number: G2

Issue Date: January 2008

VoicePath™ API-II

VOICE SOLUTIONS

FEATURING

Document ID# 126855 Date: February 5, 2008
Rev: G Version: 2
Distribution: Per License Agreement

TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION . 1

1.1 About this User’s Guide . 1
1.1.1 Chapter Overview . 1
1.1.2 Frequently Used Terms. 2
1.1.3 Documentation Conventions . 2

1.2 VP-API-II Overview . 2
1.2.1 Features . 2

1.2.1.1 Profiles . 3
1.2.1.2 Options . 3

1.2.2 Architecture . 3
1.2.2.1 VP-API-II. 4
1.2.2.2 Customer Application . 4
1.2.2.3 Operating System. 4
1.2.2.4 Hardware Abstraction Layer . 5
1.2.2.5 System Services Layer. 5

1.2.3 Supported Hardware Configurations . 5
1.2.3.1 Voice Control Processor (VCP and VCP2). 7

1.2.4 VP-API-II Function Summary . 8
1.2.4.1 System Configuration . 8
1.2.4.2 Initialization. 8
1.2.4.3 Control . 9
1.2.4.4 Query/Status. 9
1.2.4.5 System Support . 10
1.2.4.6 Hardware Abstraction Layer . 10

1.2.5 Basic VP-API-II Data Types . 10
1.2.6 VP-API-II Function Return Type . 11

1.3 API-II Source Version Number . 12
1.4 Technical Support . 13

CHAPTER 2 PROFILES . 15
2.1 Overview . 15
2.2 Profile Types . 15
2.3 Profile Tables . 16
2.4 Profile Functions. 17

CHAPTER 3 SYSTEM CONFIGURATION FUNCTIONS . 19
3.1 Overview . 19
3.2 Objects and Contexts . 19
3.3 Multi-Tasking Applications . 21

3.3.1 Multi-Tasking with Protected Memory . 22
3.4 Function Descriptions. 23

3.4.1 VpMakeDeviceObject() . 23
3.4.2 VpMakeLineObject() . 24
3.4.3 VpMakeDeviceCtx() . 26
3.4.4 VpMakeLineCtx(). 27
3.4.5 VpFreeLineCtx() . 28
3.4.6 VpGetDeviceInfo() . 29

ii

V P A P I - I I U S E R ’ S G U I D E

3.4.7 VpGetLineInfo() . 30
3.4.8 VpMapLineId() . 31

CHAPTER 4 OPTIONS. 33
4.1 Overview . 33
4.2 Option Summary . 33
4.3 Option Descriptions . 35

4.3.1 VP_DEVICE_OPTION_ID_PULSE . 35
4.3.2 VP_DEVICE_OPTION_ID_CRITICAL_FLT . 37
4.3.3 VP_OPTION_ID_ZERO_CROSS . 37
4.3.4 VP_DEVICE_OPTION_ID_RAMP2STBY . 38
4.3.5 VP_OPTION_ID_PULSE_MODE . 38
4.3.6 VP_OPTION_ID_TIMESLOT . 38
4.3.7 VP_OPTION_ID_CODEC . 39
4.3.8 VP_OPTION_ID_PCM_HWY . 39
4.3.9 VP_OPTION_ID_LOOPBACK . 40
4.3.10 VP_OPTION_ID_LINE_STATE. 40
4.3.11 VP_OPTION_ID_EVENT_MASK . 41
4.3.12 VP_OPTION_ID_RING_CNTRL . 42
4.3.13 VP_OPTION_ID_DTMF_MODE . 43
4.3.14 VP_DEVICE_OPTION_ID_DEVICE_IO . 44
4.3.15 VP_OPTION_ID_PCM_TXRX_CNTRL. 45
4.3.16 VP_DEVICE_OPTION_ID_DEV_IO_CFG . 46
4.3.17 VP_OPTION_ID_LINE_IO_CFG. 47
4.3.18 VP_OPTION_ID_DTMF_SPEC. 48

CHAPTER 5 EVENTS. 49
5.1 Overview . 49
5.2 Event Summary . 49
5.3 Fault Events . 53

5.3.1 VP_DEV_EVID_BAT_FLT . 53
5.3.2 VP_DEV_EVID_CLK_FLT . 53
5.3.3 VP_LINE_EVID_THERM_FLT . 53
5.3.4 VP_LINE_EVID_DC_FLT . 54
5.3.5 VP_LINE_EVID_AC_FLT . 54
5.3.6 VP_DEV_EVID_EVQ_OFL_FLT. 54
5.3.7 VP_DEV_EVID_WDT_FLT . 54

5.4 Signaling Events. 55
5.4.1 VP_LINE_EVID_HOOK_OFF . 55
5.4.2 VP_LINE_EVID_HOOK_ON . 55
5.4.3 VP_LINE_EVID_GKEY_DET . 55
5.4.4 VP_LINE_EVID_GKEY_REL . 56
5.4.5 VP_LINE_EVID_FLASH . 56
5.4.6 VP_LINE_EVID_STARTPULSE . 56
5.4.7 VP_LINE_EVID_EXTD_FLASH . 56
5.4.8 VP_LINE_EVID_DTMF_DIG. 57
5.4.9 VP_LINE_EVID_PULSE_DIG . 57
5.4.10 VP_LINE_EVID_MTONE . 57
5.4.11 VP_DEV_EVID_TS_ROLLOVER . 57

5.5 Response Events . 58
5.5.1 VP_DEV_EVID_BOOT_CMP . 58
5.5.2 VP_LINE_EVID_LLCMD_TX_CMP. 58
5.5.3 VP_LINE_EVID_LLCMD_RX_CMP . 59
5.5.4 VP_DEV_EVID_DNSTR_MBOX. 59
5.5.5 VP_LINE_EVID_RD_OPTION . 59

iii

V P A P I - I I U S E R ’ S G U I D E

5.5.6 VP_LINE_EVID_RD_LOOP . 60
5.5.7 VP_EVID_CAL_CMP . 61
5.5.8 VP_EVID_CAL_BUSY . 62
5.5.9 VP_LINE_EVID_GAIN_CMP . 62
5.5.10 VP_DEV_EVID_DEV_INIT_CMP . 62
5.5.11 VP_LINE_EVID_LINE_INIT_CMP. 63
5.5.12 VP_DEV_EVID_IO_ACCESS_CMP . 63
5.5.13 VP_LINE_EVID_LINE_IO_RD_CMP . 64
5.5.14 VP_LINE_EVID_LINE_IO_WR_CMP . 64

5.6 Test Events . 65
5.6.1 VP_DEV_EVID_STEST_CMP . 65
5.6.2 VP_DEV_EVID_CHKSUM . 65

5.7 Process Events . 66
5.7.1 VP_LINE_EVID_MTR_CMP . 66
5.7.2 VP_LINE_EVID_MTR_ABORT . 66
5.7.3 VP_LINE_EVID_MTR_CAD . 66
5.7.4 VP_LINE_EVID_CID_DATA . 67
5.7.5 VP_LINE_EVID_RING_CAD. 67
5.7.6 VP_LINE_EVID_SIGNAL_CMP . 67
5.7.7 VP_LINE_EVID_TONE_CAD . 68

CHAPTER 6 INITIALIZATION FUNCTIONS . 69
6.1 Overview . 69
6.2 Function Descriptions. 70

6.2.1 VpBootLoad() . 70
6.2.2 VpInitDevice() . 71
6.2.3 VpInitLine() . 73
6.2.4 VpConfigLine() . 74
6.2.5 VpCalCodec() . 75
6.2.6 VpCalLine() . 76
6.2.7 VpInitRing() . 77
6.2.8 VpInitCid() . 78
6.2.9 VpInitMeter() . 79
6.2.10 VpInitProfile(). 80
6.2.11 VpSoftReset() . 81
6.2.12 VpSetBatteries() . 82

CHAPTER 7 CONTROL FUNCTIONS . 83
7.1 Overview . 83
7.2 Function Descriptions. 84

7.2.1 VpSetLineState() . 84
7.2.2 VpSetLineTone() . 86
7.2.3 VpSetRelayState(). 87
7.2.4 VpSetRelGain() . 88
7.2.5 VpSendSignal() . 89
7.2.6 VpSendCid() . 92
7.2.7 VpContinueCid() . 93
7.2.8 VpStartMeter() . 94
7.2.9 VpSetOption() . 95
7.2.10 VpDeviceIoAccess() . 96
7.2.11 VpSelfTest() . 97
7.2.12 VpLowLevelCmd() . 98
7.2.13 VpSetBFilter() . 99
7.2.14 VpLineIoAccess() . 100
7.2.15 VpDeviceIoAccessExt() . 101

iv

V P A P I - I I U S E R ’ S G U I D E

CHAPTER 8 STATUS AND QUERY FUNCTIONS . 103
8.1 Overview . 103
8.2 Function Descriptions. 104

8.2.1 VpGetEvent(). 104
8.2.2 VpGetLineStatus() . 106
8.2.3 VpGetDeviceStatus(). 107
8.2.4 VpGetLoopCond() . 108
8.2.5 VpGetOption() . 109
8.2.6 VpGetLineState(). 110
8.2.7 VpFlushEvents() . 111
8.2.8 VpGetResults() . 112
8.2.9 VpClearResults() . 113
8.2.10 VpCodeCheckSum() . 114
8.2.11 VpGetDeviceStatusExt() . 114

CHAPTER 9 SYSTEM SERVICES . 117
9.1 Overview . 117
9.2 VP-API-II Reentrency . 117
9.3 Function Descriptions. 119

9.3.1 VpSysEnterCritical() . 119
9.3.2 VpSysExitCritical(). 120

CHAPTER 10 HARDWARE ABSTRACTION LAYER . 121
10.1 Overview . 121
10.2 Function Descriptions. 122

10.2.1 VpHalHbiInit() . 122
10.2.2 VpHalHbiCmd() . 123
10.2.3 VpHalHbiWrite() . 124
10.2.4 VpHalHbiRead() . 125
10.2.5 VpHalHbiBootWr() . 126

CHAPTER 11 INTERRUPT HANDLING. 127
11.1 Overview . 127
11.2 Handling Interrupts from VCP and VPP Devices . 127

APPENDIX A GLOSSARY. 129
APPENDIX B FUNCTION INDEX. 131
APPENDIX C RELAY CONFIGURATIONS . 139
APPENDIX D REVISION HISTORY. 141

Rev B1 – 12/19/2005 . 141
Rev C1 – 3/31/2006 . 141
Rev D1 - 08/02/2006 . 141
Rev D2 - 10/02/2006 . 141
Rev D3 - 12/19/2006 . 141
Rev E1 - 10/3/2007 . 141
Rev E2 - 1/4/2007 . 142

CHAPTER

1

1 INTRODUCTION

1.1 ABOUT THIS USER’S GUIDE

This document describes the Zarlink Semiconductor VoicePath™ Application Program Interface,
otherwise known as VP-API-II. It is used to control Zarlink Semiconductor’s telephony Voice
Termination Devices (VTDs). This chapter highlights the document structure and conventions and
summarizes the VP-API-II architecture and features.

1.1.1 Chapter Overview

This user’s guide consists of the following chapters:

Chapter 2, Profiles: Explains the concept of the VP-API-II profiles.

Chapter 3, System Configuration Functions: Describes the VP-API-II system configuration
functions.

Chapter 4, Options: Describes the VP-API-II options.

Chapter 5, Events: Describes the VP-API-II events.

Chapter 6, Initialization Functions: Describes the VP-API-II initialization functions.

Chapter 7, Control Functions: Describes the VP-API-II control functions.

Chapter 8, Status and Query Functions: Describes the VP-API-II status and query functions.

Chapter 9, System Services: Describes the VP-API-II system support functions.

Chapter 10, Hardware Abstraction Layer: Describes the VP-API-II hardware abstraction layer
functions.

Chapter 11, Interrupt Handling: Discusses methods for handling VP-API-II interrupts.

Appendix A, Glossary: Defines uncommon terminology used throughout this document.

Appendix B, Function Index: Provides a summary of all VP-API-II functions.

2

V P A P I - I I U S E R ’ S G U I D E

1.1.2 Frequently Used Terms

The following terms are used extensively throughout this document:

Device: The term device refers to a Zarlink Semiconductor VTD. Examples of a device include
Zarlink Semiconductor’s conventional SLAC™ devices, Voice Control Processor (VCP) devices,
and Voice Packet Processor (VPP) devices. The VP-API-II primarily configures and controls a
device. A device provides services for one or more channels to perform functions of termination
lines.

Channel: The term channel refers to resources associated with a device in performing the functions
of a termination line. Thus, if a device has resources to support four termination lines, the device is
said to have four channels. Note that a channel by itself does not represent all the blocks that are
necessary to implement a termination line; it merely represents part of the resources that are
provided by a device.

Line: The term line means termination line in this document. Line refers to the complete system
solution (application software, VP-API-II software, Zarlink Semiconductor VTDs, other hardware)
that implements an FXS or FXO termination line. The line uses the channel resources of a device
in order to realize the features of the line.

Refer to Appendix A, Glossary for the definition of other uncommon terms used in this document.

1.1.3 Documentation Conventions

The VP-API-II User’s Guide uses the formatting conventions shown in Table 1–1.

Table 1–1 Documentation Conventions

1.2 VP-API-II OVERVIEW

The VP-API-II is a C source code module that provides a standard software interface for controlling,
testing, and passing digitized voice through a set of subscriber lines using Zarlink Semiconductor
Voice Termination Devices. The VP-API-II hides the details of controlling Zarlink Semiconductor
VTDs and allows software developers to focus on the application instead of the hardware.

1.2.1 Features

Listed below are the key features of the VP-API-II. Note that some features depend on support from
the underlying hardware.

• Provides an abstract, uniform software interface for any combination of Zarlink Semiconductor
voice products.

• Utilizes the concept of Profiles to help organize design-specific parameters.
• Supports any combination of FXS and FXO lines configured for either loop-start signaling or

ground-start signaling.
• Includes pulse-digit/flash decoder and ring/tone cadence engine.
• Proven on embedded operating systems such as Linux and VxWorks, and also compatible

Format Usage

Bold Courier New Indicates a VP-API-II function or data type.

Plain Courier New Indicates computer code or a file name.

Bold Blue Underlined Text Indicates a hyper link cross-reference or a web site.

Italic Emphasizes an important term.

3

V P A P I - I I U S E R ’ S G U I D E

with non-OS environments. Fits into common driver and static/dynamic library models.
• Supports various interrupt modes and both big-endian and little-endian microprocessors.
• Implemented in object oriented C code that is efficient, portable, and ANSI C compliant.
• Supports line testing equivalent to GR-844 and GR-909 functions.

1.2.1.1 Profiles

Zarlink Semiconductor products can be configured to meet worldwide standards, including custom
requirements. To address such varying system-level specifications, Zarlink Semiconductor provides
tools like WinSLAC™ and ProfileWizard to help engineers generate design data. The design data
provided by these tools is organized into profiles to meet specific system requirements. The data
for each profile is created with the Profile Wizard application. The VP-API-II defines profiles for the
following design parameters:

• Device Configuration
• AC transmission
• DC feed
• FXO Line Detection and Generation Parameters
• Ringing configuration
• Call-progress tones
• Cadence patterns
• Caller ID configuration
• Custom Termination I/O Configuration
• Metering configuration

1.2.1.2 Options

The VP-API-II provides several options to configure Zarlink Semiconductor products for a variety of
systems and markets. These options can be viewed and modified using VP-API-II functions without
requiring knowledge about their implementation. The following is a short list of VP-API-II
configuration options:

• Codec selection
• PCM timeslot and highway assignment
• Pulse digit detection timing
• Automatic state transition upon fault
• Loopback

1.2.2 Architecture

Figure 1–1 on page 4 illustrates a typical software block diagram of a system incorporating the VP-
API-II. The VP-API-II module provides services to the Application Layer. The VP-API-II requires the
System Services Layer and Hardware Abstraction Layer to operate correctly. This document
describes the interfaces between the VP-API-II and those software modules implemented by the
user. The following sections describe each of the blocks shown in Figure 1–1.

4

V P A P I - I I U S E R ’ S G U I D E

Figure 1–1 Software Block Diagram

1.2.2.1 VP-API-II

The VP-API-II is the core component of Zarlink Semiconductor’s VoicePath Software Development
Kit (SDK). This software module runs on the host microprocessor that controls one or more Zarlink
Semiconductor VTDs. This code is supplied by Zarlink Semiconductor and should not require
modification by the application developer.

1.2.2.2 Customer Application

This block represents the user’s line management module that performs task such as initializing the
system, configuring lines, changing line states in response to line events and other inputs, switching
digitized voice traffic, etc. These functions may be distributed across a large and complex system,
but they are shown as one block in Figure 1–1 for convenience. Zarlink Semiconductor provides
example implementations of this layer as part of the VP-SDK.

1.2.2.3 Operating System

This block represents whatever operating system (if any) that the user is running on the host
microprocessor. The VP-API-II does not directly utilize any operating system resources (e.g.
queues, semaphores, etc.). However, the application developer may wish to use operating system
features such as tasks or shared memory with the VP-API-II. Multi-Tasking Applications, on page 21
covers using the VP-API-II in a multitasking environment in detail. Note also that the System
Services Layer may utilize operating system facilities depending on the application.

Customer Application
or

Zarlink Demonstration Applications
(QuickStart)

VoicePath Application
Program Interface II

(VP-API-II)

System Services
OS or Software Architecture
Interface.
 - Interrupt control
 - Timer services
 - Enter/Exit critical

VoicePath API-II Control
Primary application interface for
Zarlink voice devices.
 - Initialize device
 - Handle events (interrupts)
 - Control line state
 - Set device options
 - Control tones and metering
 - Initiate line tests
 - Exchange voice packets

HAL Access
Abstracts HBI and MPI device
access.
 - Device read/write
 - HBI init and bootload
 - HBI command

Commercial OS,
Custom OS,

or
non-OS System

Software

Zarlink Voice
Device Hardware

Hardware Abstraction
Layer
(HAL)

S
ys

te
m

 S
er

vi
ce

s
(S

o
ft

w
ar

e
In

te
rf

ac
e

L
ay

er
)

H
B

I /
 M

 P
I

5

V P A P I - I I U S E R ’ S G U I D E

1.2.2.4 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) provides access to Zarlink Semiconductor devices through
the Host Bus or Microprocessor Interface (HBI or MPI) depending on the selected device. The HAL
software is platform-dependent and must be implemented by the VP-API-II user. Zarlink
Semiconductor provides example HAL source code with the VP-SDK. Refer to Hardware
Abstraction Layer, on page 121 for further details.

1.2.2.5 System Services Layer

The System Services Layer abstracts platform-specific functions such as interrupt control and
timing services. This layer derives the functions required by the VP-API-II from the facilities
provided by the underlying hardware or operating system. This module is also platform-dependent
and must be implemented by the VP-API-II user. Zarlink Semiconductor provides example System
Services Layer source code with the VP-SDK. Refer to System Services, on page 117 for further
details.

1.2.3 Supported Hardware Configurations

The VP-API-II supports three general hardware configurations with many possible combinations of
Zarlink Semiconductor devices. These three hardware configurations are identified by the type of
Zarlink Semiconductor device that the VP-API-II host microprocessor is directly interfaced to. The
following hardware configurations are supported:

• Conventional SLAC
In this configuration the microprocessor running the VP-API-II is directly connected to one or
more traditional Zarlink Semiconductor SLAC devices. The term CSLAC in this document
refers to this hardware configuration.

• Voice Control Processor (includes VCP and VCP2 device types)
In this configuration the microprocessor running the VP-API-II is interfaced to Zarlink
Semiconductor’s Voice Control Processor (VCP), which aggregates the control of several
CSLAC type of devices each controlling one or more lines.
– For the remainder of this document, VCP and VCP2 will be used interchangeably.

Differences are noted when relevant.
• Voice Packet Processor

In this configuration the microprocessor running the VP-API-II is interfaced to Zarlink
Semiconductor’s Voice Packet Processor (VPP), which is essentially an enhanced SLAC
device targeted at Voice Over Broadband applications. The term VPP in this document refers
to this configuration.

There may be many combinations of features, terminations, and devices supported by any one of
the above hardware configurations. Table 1–2 on page 6 lists the device configurations supported
by the VP-API-II. The Primary Device column indicates which type of device the host
microprocessor is directly interfaced to. The Software Device Type column indicates which
VpDeviceType constant maps to each Primary Device. The Part Numbers column indicates which
Zarlink Semiconductor parts or device families apply to each configuration. Finally, the
Configuration Name column lists the terminology used throughout this document to refer to a
specific device configuration. The VP-API-II supports any combination of the configurations shown
in Table 1–2 at run-time, subject to the limitations of the target hardware.

6

V P A P I - I I U S E R ’ S G U I D E

Some VP-API-II features are only supported with certain device configurations. This document
refers to the specific device Configuration Names shown in Table 1–2 when referring to such a
device-specific feature. Note that the VCP device supports different SLAC device families
depending on the firmware loaded into the VCP at run-time. The line testing features supported by
the VCP-790 also vary according to the firmware load. Each of the device configurations described
above supports one or more of the line termination types listed in Table 1–3.

Table 1–2 Supported Device Configurations

Primary
Device

Software Device Type
(VpDeviceType) Part Numbers Configuration Names

CSLAC

VP_DEV_790_SERIES
Le79Q224x

Le7922x
Le79228x

CSLAC-790
CSLAC-790
CSLAC-790

VP_DEV_880_SERIES Le88xxx CSLAC-880

VP_DEV_890_SERIES Le89xxx CSLAC-890

VP_DEV_580_SERIES
Le58QLxxx

Le58083

CSLAC-580
CSLAC-580
CSLAC-580

VPP VP_DEV_VPP_SERIES Le79610 VPP

VCP VP_DEV_VCP_SERIES

Le79112+Le79228

Le79112+Le88xxx

VCP-790
VCP-790-NT (No Test)
VCP-790-BT (Basic Test)
VCP-790-AT (Advanced Test)
VCP-790-ATP (Advanced Test+)

VCP-880
VCP-880-NT (No Test)

VCP2 VP_DEV_VCP2_SERIES

Le79114+Le79228

Le79124+Le79238

VCP2-790
VCP2-790-NT (Call Control)
VCP2-790-BT (Basic Test)
VCP2-790-AT (Advanced Test)
VCP2-790-ATP (Advanced Test+)

VCP2-792
VCP2-792-NT (Call Control)
VCP2-792-BT (Basic Test)
VCP2-792-AT (Advanced Test)
VCP2-792-ATP (Advanced Test+)

Table 1–3 Supported Termination Types

Software Termination Type
(VpTermType) Devices Description

FXS Termination Types

VP_TERM_FXS_GENERIC CSLAC, VCP,
VCP2, VPP Generic FXS termination

VP_TERM_FXS_ISOLATE CSLAC-880 FXS termination with SLIC driver isolation
relay

VP_TERM_FXS_SPLITTER CSLAC-880
FXS termination with Splitter and sense path
for FEMF is outside the Splitter (connection
closest to customer T/R).

7

V P A P I - I I U S E R ’ S G U I D E

This document describes the VP-API-II only as it applies to VCP and VCP2 devices with no line
testing capabilities. Information specific to other device configurations is omitted from this
document.

1.2.3.1 Voice Control Processor (VCP and VCP2)

The architecture for VCP and VCP2 VoicePath systems is shown below.

Figure 1–2 VoicePath System Architecture Example Using VCP Devices

VP_TERM_FXS_TITO_TL_R VCP-790, VCP2-
790

FXS termination using Le792x2 SLIC, with
test-in, test-out bus access relay and ringing
bus access relay and a test load.

VP_TERM_FXS_75181
CSLAC-790,

VCP-790, VCP2-
790

SLIC Le792x2/ LCAS Le75181; External
ringing bus access through the LCAS.

VP_TERM_FXS_75282
CSLAC-790,

VCP-790, VCP2-
790

SLIC Le792x2 / LCAS Le75282; Test-out bus
access relay; Test-in, external ringing bus
access through the LCAS.

VP_TERM_FXS_RR VCP-790, VCP2-
790

SLIC Le792x2 with shared ringing, reset relay
and with test load

VP_TERM_FXS_TO_TL
CSLAC-790,

VCP-790, VCP2-
790

SLIC Le792x2 with test-out relay and test load

VP_TERM_FXS_CUSTOM CSLAC-580
Custom FXS termination. Case where the user
specifies the SLAC, SLIC, and I/O connections
required to set Line States and Detector status.

FXO Termination Types

VP_TERM_FXO_GENERIC CSLAC-880,
CSLAC-890 FXO termination for VE880 and VE890 series

VP_TERM_FXO_CUSTOM CSLAC-580

Custom FXO termination. Case where the user
specifies the SLAC, and I/O connections
required to set Line States and Line Detector
status.

VP_TERM_FXO_DISC CSLAC-880
FXO termination using disconnect circuitry to
improve Disconnect detection on an FXO line
when the FXO line is providing Loop Close.

Table 1–3 Supported Termination Types

VCP
#0

SLAC
#0

SLAC
#7

Serial I/F

DeviceId =>

FXS/FXO
Termination

#0

...

... FXS/FXO
Termination

FXS/FXO
Termination

... FXS/FXO
Termination

VCP
#N-1

Serial I/F

FXS/FXO
Termination

...

... FXS/FXO
Termination

FXS/FXO
Termination

... FXS/FXO
Termination

#L-1

HBI (Parallel or Serial)

Application
VP-API

HOST
Common API

SLAC Control

Application
Line Num =>

channelId => #0 #31

SLAC
#7

#31

SLAC
#0

#0

8

V P A P I - I I U S E R ’ S G U I D E

The number of SLACs and lines a single VCP can control depend on the VCP silicon (part number),
FW image, and SLAC device it is connected to. Refer to the appropriate SW Data Sheet for more
information.

The VCP performs all the management required for controlling multiple SLAC devices as well as all
the sequencing necessary for advanced line test functionality. To the host processor, the VCP looks
like a single multi-line voice controller. The host communicates directly with the VCP device(s)
through the HBI and does not communicate directly with any of the individual SLAC devices
controlled by the VCP. Each VCP communicates with its SLAC device(s) through the appropriate
interface for the connected SLAC. Multiple VCP devices can be connected to the same host, as
shown in Figure 1–2.

1.2.4 VP-API-II Function Summary

This section provides a brief overview of each of the VP-API-II functions.

1.2.4.1 System Configuration

The VP-API-II uses the concept of device objects and line objects to manage run-time support for
different types of VTDs and line terminations. An instance of a device object represents a physical
VTD controlled by the VP-API-II. A device object can represent any type of VTD (CSLAC, VCP, or
VPP) as long as support for that type of VTD is included in the VP-API-II at compile-time. Device
contexts are essentially handles to device objects. There must be exactly one instance of a device
object per VTD in the system, but there can be many device contexts referring to a single device
object. Similarly, an instance of a line object represents one physical line managed by the VP-API-
II. Line contexts are basically handles to line objects. There must be exactly one instance of a line
object per physical line in the system, but there can be many line contexts referring to a single line
object. The System Configuration functions manage device objects, line objects, device contexts,
and line contexts.

• VpMakeDeviceObject() – Initializes a device object to control a physical device. Also
initializes a device context that refers to the new device object.

• VpMakeLineObject() – Initlializes a line object and associates it with a device object. Also
initializes a line context that refers to the new line object.

• VpGetDeviceInfo() – Retrieves device-specific information from a device or line context.
• VpGetLineInfo() – Retrieves line-specific information from a device or line context.
• VpFreeLineCtx() – Tells the API that the application no longer needs a particular line

context.
• VpMakeDeviceCtx() – Allows creating more than one device context referring to the same

device object, which is useful in multitasking applications.
• VpMakeLineCtx() – Allows creating more than one line context referring to the same line

object, which is useful in multitasking applications.

1.2.4.2 Initialization

These functions initialize aspects of the system or perform the configuration required before a
particular feature can be used.

• VpBootLoad() – Loads the device code and data image, and starts the device.
• VpInitDevice() – Initializes all FXS and FXO lines of a device and applies the specified

profiles to those lines.
• VpInitLine() – Initializes an individual FXS or FXO line and applies the specified profiles to

that line.
• VpConfigLine() – Sets the AC, DC, and Ring Profiles for an individual FXS line.
• VpSetBatteries() – Sets the battery settings in the device, used to improve dc feed

performance on devices that support this function.

9

V P A P I - I I U S E R ’ S G U I D E

• VpCalCodec() – Issues a calibrate analog circuit command to a SLAC device.
• VpCalLine() – Instructs overhead voltage for a SLIC device to be calibrated for a FXS line.
• VpInitRing() – Sets the ringing parameters such as the ringing cadence and Caller ID

profile for an individual FXS line.
• VpInitCid() – Prepares a FXS line for a Caller ID ring sequence.
• VpInitMeter() – Configures the metering signal generator of an individual FXS line.
• VpInitProfile() – Initializes the device’s profile tables.
• VpSoftReset() – Resets the device without requiring an image re-load.

1.2.4.3 Control

The control functions manage the current line state and set options that may change during run-
time.

• VpSetLineState() – Sets a line to the requested state.
• VpSetLineTone() – Generates a cadenced call progress tone on a FXS line.
• VpSetRelayState() – Sets the line relay configuration.
• VpSetRelGain() – Sets the relative transmit or receive gain for a line.
• VpSendSignal() – Generates message waiting pulse on FXS lines, or pulse and DTMF

digits on FXO lines.
• VpSendCid() – Starts a Caller ID sequence on a FXS line without waiting for a ring state

change.
• VpContinueCid() – Refreshes the Caller ID buffer for a FXS line during message

transmission.
• VpStartMeter() – Starts metering on a FXS line.
• VpSetOption() – Sets various device and line specific options.
• VpDeviceIoAccess() – Controls device input/output pins.
• VpSelfTest() – Performs the self-test procedure on a line.
• VpLowLevelCmd() – Allows the application to issue low level commands directly to the VTD.

This function is an internal debugging tool that should not be used by the application.
• VpSetBFilter() – Enables with the coefficients provided or disables the B-Filter.
• VpLineIoAccess() – Controls input/output pins for a specific line.
• VpDeviceIoAccessExt() – Controls device input/output pins. An extended replacement

for VpDeviceIoAccess().

1.2.4.4 Query/Status

These functions get information and events from the VTD.

• VpGetEvent() – Returns events corresponding to a device.
• VpGetLineStatus() – Returns the state of a particular status flag for one line.
• VpGetDeviceStatus() – Returns the state of a particular status flag for up to 32 lines.
• VpGetLoopCond() – Reads loop conditions for an FXS line and returns parameters such as

voltage, current, and resistance.
• VpGetOption() – Returns the current setting of an option.
• VpGetLineState()– Reads the current line state.
• VpFlushEvents() – Flushes all outstanding events.
• VpGetResults() – Reads the data associated with an event.
• VpClearResults() – Discards the data associated with an event.
• VpCodeCheckSum() – Returns a checksum of the VTD code memory.
• VpGetDeviceStatusExt() – Returns the state of a particular status flag for all lines of a

10

V P A P I - I I U S E R ’ S G U I D E

device. An extended replacement for VpGetDeviceStatus().

1.2.4.5 System Support

The system support functions are platform-specific and must be implemented for the target host
processor.

• VpSysEnterCritical() – Blocks entry into a critical section of VP-API code through some
user-defined method.

• VpSysExitCritical() – Marks the end of a VP-API critical code section.

1.2.4.6 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) functions contain the lowest level of code used to directly
interface with the VTDs. These functions are platform-specific and must be implemented for the
target host processor.

• VpHalHbiInit() – Initializes a VCP or VPP device for access through the HBI.
• VpHalHbiCmd() – Issues an HBI command.
• VpHalHbiWrite() – Performs HBI write transactions.
• VpHalHbiRead() – Performs HBI read transactions.
• VpHalHbiBootWr() – Performs boot-loading through the HBI.

1.2.5 Basic VP-API-II Data Types

Table 1–4 lists the basic data types used extensively throughout the VP-API-II. These types are
defined in the vp_api_types.h header file. It may be necessary to change the definition of some
of these types depending on the target platform or application preferences. Many other types are
defined within the VP-API-II, but the user should never redefine any VP-API-II types other than
those in vp_api_types.h.

11

V P A P I - I I U S E R ’ S G U I D E

Table 1–4 Basic VP-API-II Data Types

1.2.6 VP-API-II Function Return Type

The vast majority of VP-API-II functions return a result code indicating whether the function
executed successfully, and if not, what type of error occurred. The enumeration type
VpStatusType is defined for this purpose. All VpStatusType codes are listed in the table below.

Type Description

VpDeviceIdType Application-dependent device ID, user defined type.

VpLineIdType Application-dependent line ID, user defined type.

bool Boolean variable assigned TRUE (1) or FALSE (0).

uchar Abbreviated unsigned char.

uint8 8-bit unsigned integer.

uint16 16-bit unsigned integer.

uint32 32-bit unsigned integer.

int8 8-bit signed integer.

int16 16-bit signed integer.

int32 32-bit signed integer.

uint8p Pointer to 8-bit unsigned integer.

uint16p Pointer to 16-bit unsigned integer.

uint32p Pointer to 32-bit unsigned integer.

int8p Pointer to 8-bit signed integer.

int16p Pointer to 16-bit signed integer.

int32p Pointer to 32-bit signed integer.

VpProfilePtrType Pointer to profile data.

VpImagePtrType Pointer to VCP/VPP bootable image.

VpVectorPtrType Pointer to VCP algorithm test vector.

VpPktDataType VPP packet buffer type.

VpPktDataPtrType Pointer to VPP packet buffer.

12

V P A P I - I I U S E R ’ S G U I D E

Table 1–5 VP-API-II Result Codes

1.3 API-II SOURCE VERSION NUMBER

Due to feature (device, termination, or function) additions and bug fixes, an application may at
runtime want to determine the current version of the API-II release. This can be found in the header
file "vp_api.h" from the macro:

#define VP_API_VERSION_TAG (0x020900)

The example shown is for Major release 02, Minor release 09, Revision 00. The Major number
indicates a complete interface change such that the application is not likely to compile, and will not
work. An application detecting a Major release number change should immediately stop. Major

Type Description

VP_STATUS_SUCCESS Function executed successfully.

VP_STATUS_FAILURE Function execution failed due to unspecified error.

VP_STATUS_FUNC_NOT_SUPPORTED Function not supported for the device.

VP_STATUS_INVALID_ARG
One or more arguments to the function are invalid. No command
is issued to the VTD.

VP_STATUS_MAILBOX_BUSY

Function failed because VCP or VPP device’s downstream
mailbox is busy. The application should try the same call again
later. The VP-API-II can be configured to repeatedly try the
mailbox, which should hide most of these errors. See
vp_api_cfg.h. Not applicable to CSLAC devices.

VP_STATUS_ERR_VTD_CODE
Unsupported device type or termination type requested in call to
VpMakeDeviceObject(), VpMakeLineObject(),
VpMakeDeviceCtx(), or VpMakeLineCtx().

VP_STATUS_OPTION_NOT_SUPPORTED
Unsupported option requested in call to VpSetOption() or
VpGetOption().

VP_STATUS_ERR_VERIFY
Returned by VpBootLoad() if an error is detected in the VCP
or VPP boot-load process. Not applicable to CSLAC devices.

VP_STATUS_DEVICE_BUSY
Resources required to perform the requested function are not
available.

VP_STATUS_MAILBOX_EMPTY
Returned by VpGetResults() if there is no data in the
upstream mailbox.

VP_STATUS_ERR_MAILBOX_DATA
Returned by VpGetResults() if the data in the upstream
mailbox does not match the expected data type.

VP_STATUS_ERR_HBI HBI communication with the VCP or VPP failed.

VP_STATUS_ERR_IMAGE
VpBootLoad() detected an error in the VCP or VPP boot
image. Not applicable to CSLAC devices.

VP_STATUS_IN_CRTCL_SECTN
Another thread is executing a critical section of code, and this
thread can not call the requested function simultaneously.

VP_STATUS_DEV_NOT_INITIALIZED
The specified device object is not yet initialized via
VpInitDevice().

VP_STATUS_ERR_PROFILE
VP-API-II detected an error in the format of a profile. This error
is also returned if the application attempts to use an uninitialized
profile from the profile table.

VP_STATUS_INVALID_VOICE_STREAM
This error is returned by voice packet handling functions when
an invalid stream identifier is specified.

13

V P A P I - I I U S E R ’ S G U I D E

number = 02 will cover the entire API-II series (with no plans for 03). The Minor release indicates a
functional change or addition. Adding a new device, termination type, function, event, or option
would justify a new Minor number. This will occur at times, but should not break a well written
application (one that uses proper default handling and unmasks only those events the application
is designed to handle). A Revision change is used for bug fixes only.

1.4 TECHNICAL SUPPORT

For technical support email techsupport@zarlink.com.

mailto:customer_support@legerity.com

14

V P A P I - I I U S E R ’ S G U I D E

CHAPTER

15

2 PROFILES

2.1 OVERVIEW
Profiles are structures that contain design data to meet specific system requirements. Many VP-
API-II functions take profiles as one or more arguments. There are several different types of profiles.
Each defines a different set of parameters for a service aspect of the device. Table 2–1 provides a
summary of all the profiles that can be used by the VP-API-II. Some profile types are not utilized by
certain device types. Also, the content of some profiles may vary according to the device type.

2.2 PROFILE TYPES
Table 2–1 VP-API-II Profile Types

All profiles should be generated by the Zarlink Semiconductor Profile Wizard, but in cases where
run-time modification is desirable, all modifications must be such that the entire profile remains
compliant with the Profile Wizard Specification. Note that all Profile Data from Profile Wizard is
declared as const. So an application that intends to modify Profile Data during run-time should
copy the data into an array that can be modified to prevent compiler warnings/errors.

Profile Type Description

Device Profile Contains the default start-up values for device-specific configuration options that
are normally set at initialization and never changed.

AC Profile
Used for programming the transmission characteristics of the system, the AC Profile
holds the VTD programmable gain and filter coefficients and data. Each AC Profile
is designed to address the specific AC transmission requirements of a given design.

DC Profile Holds the VTD DC feed commands and data. Each DC Profile is designed to
address the specific DC feed requirements of a given design.

Ringing Profile

Contains the commands and data to set up the ringing signal generator of the VTD.
Different profiles can be used to vary the ringing characteristics of a line. Options
available in the Ringing Profile include ringing waveform, frequency, amplitude, and
DC offset.

Metering Profile
Contains the commands and data to set up the metering pulse signal generator of
the VTD. The parameters configured include pulse current limits, voltage limits, and
frequency.

Tone Profile Defines the various call progress tones that might be used in a system. Examples
tones include: dial tone, busy, ring-back, and reorder.

Ringing Cadence
Profile Defines the various cadences that might be used when ringing a phone.

Tone Cadence
Profile

Defines the various cadences that might be used when generating call progress
tones.

Caller ID Profile
Defines the off-hook and on-hook signaling protocol for services such as Caller ID
and message waiting indication.

FXO Configuration
Profile

Contains the FXO configuration, including ringing detection frequency window,
ringing detection amplitude, and loop open disconnect voltage.

16

V P A P I - I I U S E R ’ S G U I D E

2.3 PROFILE TABLES
The VP-API-II provides profile tables that allow a one or more instances of each type of profile to
be pre-loaded into the device. Profiles tables are implemented in the VCP and VPP devices
themselves, but for CSLAC devices the profile tables are simulated in software. Figure 2–1
illustrates the concept of profile tables.

Figure 2–1 Profile Tables

Each box in Figure 2–1 represents one instance of a profile. Each stack of boxes represents a table
of that specific type of profile. In this example the number and type of profiles shown applies to the
VCP device. The application refers to an individual profile within a profile table by passing a profile
table index into VP-API-II functions. Profile table indices are simply C macros in the form of
VP_PTABLE_INDEXx where . VP_PTABLE_NULL is a special value indicating that no
profile argument is specified.

The application can load data into a profile table entry at any time. However, overwriting a profile
table entry while that profile is in use could result in unusual behavior. Profiles are typically loaded
by the application during VTD initialization. When the host application requires the services of the
profile, it simply refers to the profile by its index in the profile table. For example, the application can
call VpInitProfile() to load a ringing cadence profile into the profile table. In subsequent calls
to VpInitRing(), the application can apply this ringing cadence to a line by specifying the
profile’s index in the profile table in the call to VpInitRing(). If the application modifies this ringing
cadence profile entry by calling VpInitProfile() again, it should force the VTD to apply the new
profile to the lines using the modified profile entry by calling VpInitRing() again for each line.

Alternatively, the application can bypass the profile tables and load profiles directly into the device
by passing a pointer to a profile instead of a profile table index. Any VP-API-II function profile
argument that is not a valid profile table index is automatically interpreted as a pointer to a profile
in memory. When a profile is passed by reference, the VP-API-II copies the profile directly into the
VTD, and the application can delete its copy of the profile once the VP-API-II function returns.

As previously mentioned, the number and type of profiles supported varies between the different
types of devices. Table 2–2 lists the number and type of profiles supported for the VCP device
family.

Device
Profile

AC
Profile

DC
Profile

Tone
Profile

Ring
Profile

Ring
Cadence

Profile

Metering
Profile

Caller ID
Profile

Tone
Cadence

Profile

1 x 15≤ ≤

17

V P A P I - I I U S E R ’ S G U I D E

Table 2–2 Profile Table Capacity

2.4 PROFILE FUNCTIONS
Below is a list of the VP-API-II functions that use profiles. Please refer to the appropriate function
descriptions for more information about these functions.

• VpInitProfile(), on page 80
• VpInitDevice(), on page 71
• VpInitLine(), on page 73
• VpConfigLine(), on page 74
• VpInitRing(), on page 77
• VpInitMeter(), on page 79
• VpSetLineTone(), on page 86
• VpSendCid(), on page 92

Profile Type Number of Profiles

Device Profile 1

AC Profile 3

DC Profile 3

Ringing Profile 2

Ringing Cadence Profile 4

Tone Profile 10

Metering Profile 2

Caller ID Profile 10

Tone Cadence Profile 11

FXO Configuration Profile 0

18

V P A P I - I I U S E R ’ S G U I D E

CHAPTER

19

3 SYSTEM CONFIGURATION
FUNCTIONS

3.1 OVERVIEW

The VP-API-II supports the following key features:

• A single host microprocessor can control multiple device types (CSLAC, VCP, VCP2, VPP)
and multiple line termination types through a common API.

• The VP-API-II is compatible with both multi-tasking and single-threaded operating systems.

VP-API-II introduces the concept of device objects, line objects, device contexts, and line contexts
to realize these important features. The System Configuration functions described in this chapter
manage these objects and contexts, and are summarized below.

• VpMakeDeviceObject() – Initializes a device object to control a physical device. Also
initializes a device context that refers to the new device object.

• VpMakeLineObject() – Initlializes a line object and associates it with a device object. Also
initializes a line context that refers to the new line object.

• VpGetDeviceInfo() – Retrieves device-specific information from a device or line context.
• VpGetLineInfo() – Retrieves line-specific information from a device or line context.
• VpFreeLineCtx() – Tells the API that the application no longer needs a particular line

context.
• VpMakeDeviceCtx() – Allows creating more than one device context referring to the same

device object, which is useful in multitasking applications.
• VpMakeLineCtx() – Allows creating more than one line context referring to the same line

object, which is useful in multitasking applications.

3.2 OBJECTS AND CONTEXTS

The VP-API-II itself does not contain any static data related to any line or device. All of the
necessary information is stored in device and line object instances, which are indirectly passed to
VP-API-II functions via device and line contexts. There is exactly one device object for every VTD
in the system, and there is exactly one line object for every line controlled by each VTD. The actual
content of the device and line objects may vary depending on the type of VTD(s) and line
termination(s) used in the system.

Device and line contexts are essentially generic "handles" to device and line objects, respectively.
Only one type of device context is defined by the VP-API-II, and an instance of the device context
can refer to any type of valid device object. Similarly, only one type of line context is defined by the
VP-API-II, and an instance of the line context can refer to any type of valid line object. The purpose
of the device/line contexts is to hide the specific type of the underlying device/line objects from the
top-level VP-API-II functions. This allows the VP-API-II functions to take pointers to generic device/
line contexts as arguments instead of taking pointers to specific device/line object types. Note that
more than one device context can refer to a single device object. Similarly, more than one line
context can refer to a single line object.

Figure 3–1 illustrates the interconnections between these objects and contexts in the simplest case,
where the VP-API-II is controlling one primary device that supports N lines. In this example there is
only one context associated with each object. The generic device context contains a link (pointer)
to the device-specific device object, and it also contains a link to each line context associated with
the device. Each generic line context contains a link to a device-specific line object and a link back

20

V P A P I - I I U S E R ’ S G U I D E

to its parent device context. Note that Figure 3–1 does not precisely depict the actual C
implementation of the device context, device object, line context, and line object structures.

Figure 3–1 Device and Line Objects and Contexts

As stated above, the VP-API-II does not allocate any storage for any type of object or context.
Therefore, the application must allocate storage for these structures, then execute VP-API-II
functions to initialize the device and line objects and their respective contexts. It is critical that the
application avoid freeing or overwriting the memory space allocated for any object or context until
the services of the associated device or line are no longer needed. The contents of the device/line
objects and contexts are managed by the VP-API-II and should never be modified by the
application. The application should avoid directly accessing the device/line objects and contexts.
The VP-API-II provides functions such as VpGetDeviceInfo() and VpGetLineInfo() that
allow the application to get information for the device and line, respectively.

The following table shows device and line object types that are associated with each device family
supported by the VP-API-II. Note that appropriate compile-time switches must be set to include the
source code defining the desired device and line object types. These conditional flags are defined
in the vp_api_cfg.h file.

Device Context

ptrToLineCtx[0]

ptrToLineCtx[1]

ptrToLineCtx[N-1]

ptrToDeviceObj Device Object

Line Object
Line Context

ptrToDeviceCtx

ptrToLineObj

Line Context

ptrToDeviceCtx

ptrToLineObj

Line Context

ptrToDeviceCtx

ptrToLineObj

Line Object

Line Object

21

V P A P I - I I U S E R ’ S G U I D E

Table 3–1 Device and Line Objects

3.3 MULTI-TASKING APPLICATIONS

It may be desirable to have multiple tasks controlling various aspects of the voice path. For
example, one process may handle call control, while another management process needs to query
line status or perform line testing. In this example, both tasks must share access to the VP-API-II.

Implementations containing multiple tasks that utilize the VP-API-II have additional requirements
and constraints. This section describes aspects of the VP-API-II designed to handle this special
case. This section does not apply to implementations not employing multiple tasks using the VP-
API-II.

Recall that the device and line objects contain state information pertaining to the associated device
or line. There must be exactly one device object for each VTD in the system and exactly one line
object for each line in the system, regardless of the number of tasks. However, each task needs its
own context for each line and device it controls.

Figure 3–2 Multi-Tasking Example

By default, the VpMakeDeviceObject() and VpMakeLineObject() functions create the object
and one context associated with the new object. When the VP-API-II is employed by multiple tasks,

VpDeviceType Compile-Time Switch Device Object Line Object

VP_DEV_790_SERIES VP_CC_790_SERIES Vp790DeviceObjectType Vp790LineObjectType

VP_DEV_VCP_SERIES VP_CC_VCP_SERIES VpVcpDeviceObjectType VpVcpLineObjectType

VP_DEV_880_SERIES VP_CC_880_SERIES Vp880DeviceObjectType Vp880LineObjectType

VP_DEV_VPP_SERIES VP_CC_VPP_SERIES VpVppDeviceObjectType VpVppLineObjectType

VP_DEV_580_SERIES VP_CC_580_SERIES Vp580DeviceObjectType Vp580LineObjectType

VP_DEV_VCP2_SERIES VP_CC_VCP2_SERIES VpVcp2DeviceObjectType VpVcp2LineObjectType

VP_DEV_890_SERIES VP_CC_890_SERIES Vp890DeviceObjectType Vp890LineObjectType

Line Context Line Context

CSLAC,
VCP, or

VPP

FXS/FXO
Termination

FXS/FXO
Termination

FXS/FXO
Termination

FXS/FXO
Termination

Line Object 1 Line Object 1 Line Object 1 Line Object 1Device Object

One Device and
Line Object for
each Voice
Termination Device
and Line

Line Context Line Context

Device Object

Device Context

Line Context

Line Context

Line Context

Line Context

Many Device and Line
Contexts are possible
for each Device and
Line Object

22

V P A P I - I I U S E R ’ S G U I D E

one task is responsible for creating the necessary objects. All tasks that use the VP-API-II must
create contexts and associate them with the single object instance using VpMakeDeviceCtx()
and VpMakeLineCtx() described later in this section. Thus, each task’s contexts are unique
handles to global objects.

Note that only one task should call VpGetEvent() and VpGetResults(). If multiple tasks need
to receive VP-API-II events, a centralized event dispatcher task should be implemented to call
VpGetEvent() and VpGetResults() and forward the events to the desired tasks.

3.3.1 Multi-Tasking with Protected Memory

In multi-tasking environments with memory protection, a shared memory region is necessary to
share the device and line objects between many tasks. In the example depicted in Figure 3–3, on
page 22, a shared memory region is shown with two tasks (A and B) both needing access to the
VP-API-II. One task is responsible for creating the shared memory region, and creating the desired
device and line objects. All tasks must create device and line contexts for use with VP-API-II
function calls.

Figure 3–3 Protected Memory Example

Shared Memory Region

Profile Table
(Optional)

Line Object 1

Line Object 2

Line Object 3

Line Object 4

Device Object

Task A
(Local Memory)

Task B
(Local Memory)

Line Context 1

Line Context 2

Line Context 3

Line Context 4

Device Context

Line Context 1

Line Context 2

Line Context 3

Line Context 4

Device Context

23

V P A P I - I I U S E R ’ S G U I D E

3.4 FUNCTION DESCRIPTIONS

3.4.1 VpMakeDeviceObject()
SYNTAX VpStatusType

VpMakeDeviceObject(

VpDeviceType deviceType, /* Type of Device (or device object) */

VpDeviceIdType deviceId, /* Device chip select identity */

VpDevCtxType *pDevCtx, /* Pointer to the Device Context */

void *pDevObj) /* Pointer to the Device Object */

DESCRIPTION This function creates a device object and device context in memory allocated by the application. It
uses the argument deviceId to identify the chip select when communicating with the device. The
deviceType argument selects the type of device and may be any of the VpDeviceType values
defined in Table 3–1. This function takes a pointer to a device context (pDevCtx) and a pointer to
a device object (pDevObj), both of which must point to memory allocated for these structures.
VpMakeDeviceObject() returns VP_STATUS_INVALID_ARG if pDevCtx or pDevObj is
VP_NULL. Otherwise, both the device context and device object are initialized with appropriate
values based on the device type. The device context can be passed to other VP-API-II functions after
it is initialized by this function.

Notes:

1. If this function does not return VP_STATUS_SUCCESS, then the application must not use the
device context created here for any other VP-API-II calls.

2. No other VP-API-II functions should be called before invoking this function.
3. The type of the device object allocated by the application must match with deviceType. The VP-

API-II has no way to check this condition, and the application could fail if there is a mismatch.
4. The VP-API-II will not know if more than one device object is created to refer to the same physical

device. If more than one device objects are used interchangeably, it could cause unpredictable
results. See VpMakeDeviceCtx(), on page 26 for details on creating more than one device
context referring to the same device object.

5. The definition of VpDeviceIdType may be modified as required by the application. The VP-API-
II itself does not interpret deviceId, but simply passes deviceId down to the HBI/MPI HAL
when attempting to access the physical device associated with this device object.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

24

V P A P I - I I U S E R ’ S G U I D E

3.4.2 VpMakeLineObject()
SYNTAX VpStatusType

VpMakeLineObject(

VpTermType termType, /* Type of line termination */

uint8 channelId, /* Numeric ID for this channel */

VpLineCtxType *pLineCtx, /* Pointer to the Line Context */

void *pLineObj, /* Pointer to the Line Object */

VpDevCtxType *pDevCtx) /* Ptr to associated device context */

DESCRIPTION This function creates a line object and line context in memory allocated by the application. The
termination type parameter (termType) describes the circuitry associated with the termination.
Compile time options are provided so that the user may omit the code for unsupported termination types
and hence minimize the compiled code size. The following termination types are defined:

Enumeration Data Type: VpTermType:
VP_TERM_FXS_GENERIC
VP_TERM_FXS_ISOLATE
VP_TERM_FXS_TITO_TL_R
VP_TERM_FXS_75181
VP_TERM_FXS_75282
VP_TERM_FXS_RR
VP_TERM_FXS_TO_TL
VP_TERM_FXO_GENERIC
VP_TERM_FXO_DISC

Not all termination types are supported by all device families. For a list of termination types and
compatible device classes, see Supported Hardware Configurations, on page 5.

The channelId parameter determines which channel of the VTD is linked to the new line object and
line context. Each VTD has a pre-defined limit on the number of channels it supports. For example, the
VCP device supports up to 32 channels. The channelId argument must be between 0 and (max
channels - 1). This function should be called once for each channel managed by each VTD.

This function takes a pointer to a line context (pLineCtx) and a pointer to a line object (pLineObj),
both of which must point to memory allocated for these structures. VpMakeLineObject() returns
VP_STATUS_INVALID_ARG if pLineCtx or pLineObj is VP_NULL. Otherwise, both the line context
and line object are initialized with appropriate values based on the device type indicated by the device
context (pDevCtx) argument. The line context can be passed to other VP-API-II functions after it is
initialized by this function.

Notes:

1. No line-specific VP-API-II functions should be called before invoking this function.
2. The device context pointed to by pDevCtx must be initialized with VpMakeDeviceObject() or

VpMakeDeviceCtx() before calling this function.
3. The type of line object allocated by the application must be compatible with the device type of the

given device context. The VP-API-II has no way to check this condition, and the application could
fail if there is a mismatch. See Table 3–1 for a list of device types and matching line object types.

4. VCP and VPP devices must be boot-loaded before calling this function because this function may
need to communicate with the VTD.

5. This function must be called before executing VpInitDevice(). See VpInitDevice(), on
page 71 for more information.

6. The VP-API-II will not know if more than one line object is created to refer to the same physical line.
If more than one line objects are used interchangeably, it could cause unpredictable results. See
VpMakeLineCtx(), on page 27 for more details on creating more than one line context referring
to the same line object.

FUNCTION
RETURNS See VP-API-II Function Return Type, on page 11

EVENTS
GENERATED None

25

V P A P I - I I U S E R ’ S G U I D E

DEVICES All

TERMINATIONS All

26

V P A P I - I I U S E R ’ S G U I D E

3.4.3 VpMakeDeviceCtx()
SYNTAX VpStatusType

VpMakeDeviceCtx(

VpDeviceType deviceType, /* Type of device (or device object) */

VpDevCtxType *pDevCtx, /* Pointer to the device context */

void *pDevObj) /* Pointer to the device object */

DESCRIPTION This function associates a device object with a device context and initializes the device context. It is
useful in multitasking applications where more than one process accesses a single device.

Only one process should initialize the device object by calling VpMakeDeviceObject(). It is possible
to initialize a device object without initializing a device context by calling the VpMakeDeviceObject()
function with VP_NULL for the pDevCtx argument.

Subsequently, any process that wants to refer to the same device object could call this function to
create a device context that can be used with other VP-API-II functions. The deviceType argument
must indicate the device type that was specified during the device object creation. The pDevObj
argument must point to the same device object that was used during its creation.

The pDevCtx argument must contain a pointer to the device context that needs to be initialized. This
function call initializes the members of the device context to point to the indicated device object and
also initializes the function pointers. Thus, the process that invoked this function has a context that it
can use and refer to a global device object.

Notes:
1. The process of creating new device contexts does not affect any state information that is stored in

the device object. The VTD’s state is also not changed.
2. This function may be called for creating device contexts only after boot-loading the device.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

27

V P A P I - I I U S E R ’ S G U I D E

3.4.4 VpMakeLineCtx()
SYNTAX VpStatusType

VpMakeLineCtx(

VpLineCtxType *pLineCtx, /* Pointer to the line context */

void *pLineObj, /* Pointer to the line object */

VpDevCtxType *pDevCtx) /* Ptr to associated device context */

DESCRIPTION This function associates a line object with a line context and initializes the line context. It is useful in
multitasking applications where more than one process wants to access a single line.

Only one process should initialize the line object by calling VpMakeLineObject(). It is possible to
initialize a line object without initializing a line context by calling the VpMakeLineObject() function
with VP_NULL for the pLineCtx argument.

Subsequently, any process that wants to refer to the same line object could call this function to create
a line context that can be used with other VP-API-II functions. The pLineObj argument must point
to the same line object that was used during its creation. The pDevCtx argument must point to an
existing device context. The pLineCtx argument must point to the line context that needs to be
initialized.

This function call initializes the members of the line context to point to the indicated line object and
also associates the line context with the given device context.

Notes:

The process of creating new line contexts does not affect any state information that is stored in the
line object.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

28

V P A P I - I I U S E R ’ S G U I D E

3.4.5 VpFreeLineCtx()
SYNTAX VpStatusType

VpFreeLineCtx(

 VpLineCtxType *pLineCtx) /* Pointer to line context */

DESCRIPTION Calling this function tells the VP-API-II that the application no longer requires services from the line
associated with pLineCtx and would like to reclaim the memory allocated to the line context and
line object.

The VP-API-II needs to know when the services of the line are no longer needed so that it can
perform cleanup activities as necessary. The application must call this function if it intends to stop
the services of a line and reclaim the memory resources allocated to it.

Note that more than one line context could be associated with one line object (see Multi-Tasking
Applications, on page 21). This function must be called for all such line contexts to completely
release all resources.

Notes:

This function does not alter the state of the physical line. The application is expected to perform any
such cleanup tasks, like placing the line in Disconnect mode and disabling the interrupts for the line.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

29

V P A P I - I I U S E R ’ S G U I D E

3.4.6 VpGetDeviceInfo()
SYNTAX VpStatusType

VpGetDeviceInfo(

 VpDeviceInfoType
*pDeviceInfo)

/* Pointer to device info */

DESCRIPTION This function returns information about a device. The following structure is defined for use with this
function:

typedef struct {
VpLineCtxType *pLineCtx; /* Pointer to Line Context */
VpDeviceIdType deviceId; /* Device identity */
VpDevCtxType *pDevCtx; /* Pointer to device Context */
VpDeviceType deviceType; /* Device Type */
uint8 numLines; /* Number of lines */
uint8 revCode; /* Silicon revision of the device */

} VpDeviceInfoType;

This function can be used in the following two ways:

1. If the pointer to the line context (pDeviceInfo->pLineCtx) is not VP_NULL, then this
function returns information about the device associated with the given line context. It fills
all other elements in the VpDeviceInfoType struct. The identity of the device is stored
in the deviceId field, a pointer to device context is stored in the pDevCtx field, the type
of device is stored in the deviceType field, and the number of lines supported by the
device is stored in the numLines field.

2. If the pointer to the line context is VP_NULL and the pointer to the device context
(pDeviceInfo->pDevCtx) is not VP_NULL, then this function returns other details like
device identity, device type, and the number of lines supported by the device. It stores this
information in their respective fields. No information is written to the line context. Note that
the application can use this function in this mode to learn the number of lines supported
by the device before creating line objects.

If pDeviceInfo is VP_NULL then this function returns an error. If both the pointer to the line context
and the pointer to the device context are VP_NULL then this function also returns an error.

Notes:

The VpDeviceInfoType::revCode field contains valid information only for the CSLAC devices.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

30

V P A P I - I I U S E R ’ S G U I D E

3.4.7 VpGetLineInfo()
SYNTAX VpStatusType

VpGetLineInfo(

 VpLineInfoType *pLineInfo) /* Pointer to line info */

DESCRIPTION This function returns information about a line. The following structure is defined for use with this
function:

typedef struct {
VpDevCtxType *pDevCtx; /* Pointer to device Context */
uint8 channelId; /* Channel identity */
VpLineCtxType *pLineCtx; /* Pointer to Line Context */
VpTermType termType; /* Termination Type */

 VpLineIdType lineId; /* Application system wide line identifier */
} VpLineInfoType;

This function can be used in the following two ways:

1. If the pointer to the device context (pLineInfo->pDevCtx) is not VP_NULL, then this
function returns information for the line associated with the specified device context and
channelId. It fills all other elements of the VpLineInfoType struct (pLineCtx, lineId
and termType) with the requested data. If no line context is associated with the specified
channelId, then this function writes VP_NULL to the line context pointer.

2. If pDevCtx is VP_NULL, and pLineInfo->pLineCtx (the pointer to the line context) is not
VP_NULL, then this function returns information for the line associated with the specified
line context. It fills all other elements of the VpLineInfoType struct (pDevCtx,
channelId, and termType) with the requested data.

If pLineInfo is VP_NULL then this function returns an error. If both the pointer to the line context and
the pointer to the device context are VP_NULL then this function also returns an error.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

31

V P A P I - I I U S E R ’ S G U I D E

3.4.8 VpMapLineId()
SYNTAX VpStatusType

VpMapLineId(

VpLineCtxType *pLineCtx,
 VpLineIdType lineId)

/* Pointer to line context */
/* Value assigned as line Id */

DESCRIPTION This function can be used to assign a system-wide line identification (lineId) to a given line. This
identifier is not used by the VP-API-II and is reported along with the event in the VpGetEvent() and
VpGetLineInfo() functions. The line identifier (VpLineIdType) is defined as a user defined type that
can be modified by the implementation.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

32

V P A P I - I I U S E R ’ S G U I D E

CHAPTER

33

4 OPTIONS

4.1 OVERVIEW

This chapter covers the VP-API-II options that are controlled by the application software at run-time. Each
option is described using the following format:

This chapter discusses the individual option types that are accessed through the VpSetOption() and
VpGetOption() functions. See VpSetOption(), on page 95 and VpGetOption(), on page 109 for
complete descriptions of these functions.

4.2 OPTION SUMMARY

VpOptionIdType defines the set of options that VpSetOption() and VpGetOption() can write and read,
respectively. Table 4–1 lists all valid options along with the applicable VTD and termination types. Each option
is described in detail later in this chapter. Note that most options are automatically set to default values by the
VP-API-II when the VTD is initialized. The default option settings are defined in vp_api_cfg.h.

Some options apply to individual lines, while other options apply to an entire VTD and all lines controlled by it.
Global device option names begin with VP_DEVICE_OPTION_ID_. All other option names begin with
VP_OPTION_ID_. The type of option (device-specific or line-specific) combined with the pLineCtx and
pDevCtx arguments determine which line’s configuration is accessed. See VpSetOption() Behavior, on
page 95 and VpGetOption() Behavior, on page 109 for details.

DESCRIPTION This is a summary description of the option.

DEFAULT This field contains the default setting for the option.

DEVICES This field lists the devices (CSLAC, VCP, VPP, All) that support the option.

TERMINATIONS This field lists the termination types (FXS, FXO, All) that support the option. Termination type "All"
means either all termination types supported by the applicable devices, or the termination type is not
relevant to the option.

Table 4–1 Available options

Options Devices Terminations Page

VP_DEVICE_OPTION_ID_PULSE All FXS 35

VP_DEVICE_OPTION_ID_PULSE2 CSLAC FXS

VP_DEVICE_OPTION_ID_CRITICAL_FLT All FXS 37

VP_OPTION_ID_ZERO_CROSS CSLAC, VCP FXS 37

VP_DEVICE_OPTION_ID_RAMP2STBY VCP FXS 38

VP_OPTION_ID_PULSE_MODE CSLAC, VCP FXS 38

VP_OPTION_ID_TIMESLOT CSLAC, VCP All 38

VP_OPTION_ID_CODEC CSLAC, VCP All 39

VP_OPTION_ID_PCM_HWY CSLAC, VCP All 39

VP_OPTION_ID_LOOPBACK All All 40

Options Devices Terminations Page

34

V P A P I - I I U S E R ’ S G U I D E

VP_OPTION_ID_LINE_STATE All FXS 40

VP_OPTION_ID_EVENT_MASK All All 41

VP_OPTION_ID_RING_CNTRL CSLAC, VCP FXS 42

VP_OPTION_ID_DTMF_MODE VCP, VPP FXS 43

VP_DEVICE_OPTION_ID_DEVICE_IO All All 44

VP_OPTION_ID_PCM_TXRX_CNTRL CSLAC, VCP All 45

VP_OPTION_ID_US_TRANSCODEC_[0...3] VPP All

VP_OPTION_ID_DS_TRANSCODEC_[0...3] VPP All

VP_OPTION_ID_ECHO_CANCELER VPP All

VP_OPTION_ID_UTD_[1...8]_COEF VPP All

VP_OPTION_ID_CLR_PKT_CNTR VPP All

VP_DEVICE_OPTION_ID_DEV_IO_CFG VCP2 All 46

VP_OPTION_ID_LINE_IO_CFG VCP2 All 47

VP_OPTION_ID_DTMF_SPEC VCP2 All 48

Table 4–1 Available options

35

V P A P I - I I U S E R ’ S G U I D E

4.3 OPTION DESCRIPTIONS

4.3.1 VP_DEVICE_OPTION_ID_PULSE
DESCRIPTION The pulse options allow the application to set the timing limits used by the VP-API-II/VTD to decode

pulse digits and hook-switch flashes. All of the times are in units of 125 µs. This option is device-specific
and applies to all lines controlled by the VTD. The pulse mode option (VP_OPTION_ID_PULSE_MODE)
determines whether automatic flash and pulse digit decoding is enabled for each line. Pulse option
parameters are passed through the VpOptionPulseType structure shown below.

typedef struct {
uint16 breakMin; /* Minimum pulse break time */
uint16 breakMax; /* Maximum pulse break time*/
uint16 makeMin; /* Minimum pulse make time */
uint16 makeMax; /* Maximum pulse make time */
uint16 interDigitMin; /* Minimum pulse interdigit time. */
uint16 flashMin; /* Minimum flash break time */
uint16 flashMax; /* Maximum flash break time */
uint16 onHookMin; /* Minimum on-Hook time */

} VpOptionPulseType;

The timing limits set by the application should conform to the following relationships:

1. breakMin < breakMax < flashMin < flashMax
2. makeMin < makeMax < interDigitMin
Figure 4–1 shows an example of a typical setting for this option. It also shows the timing relationship
between the dialed digit and the events generated.

Notes:

1. Parameter onHookMin is compiled out of the API-II by default and is not accessible by applications.
To enable onHookMin, the value EXTENDED_FLASH_HOOK must be changed to #define in file
vp_api_cfg.h.

2. Parameter onHookMin is not supported by VCP or VPP devices and therefore forced equal to
(flashMax+1) by the API-II library.

Figure 4–1 Typical VP Option Pulse Timing Diagrams

��
��

�
�

Min MaxMaxMin
Loop Close (Make)

Loop Open (Break)

Typical Break = 60 ms (60% @ 10 pps)
Break Min (t bmin) = 47 ms (56% @ 12 pps)
Break Max (tbmax) = 80 ms (64% @ 8 pps)

Typical Make = 40 ms (40% @ 10 pps)
Make Min (t mmin) = 30ms (36% @ 12 pps)
Make Max (tmmax)= 55 ms (44% @ 8 pps)

tbmin tmmin

tbmax tmmax

Make

Break

Start Pulse Event
Digit Event Generated

(Digit = 3)

Interdigit Min

36

V P A P I - I I U S E R ’ S G U I D E

DEFAULT VpOptionPulseType::breakMin = 33 * 8; /* 33 milliseconds */
VpOptionPulseType::breakMax = 100 * 8; /* 100ms */
VpOptionPulseType::makeMin = 17 * 8; /* 17ms */
VpOptionPulseType::makeMax = 75 * 8; /* 75ms */
VpOptionPulseType::interDigitMin = 250 * 8; /* 250ms */
VpOptionPulseType::flashMin = 250 * 8; /* 250ms */
VpOptionPulseType::flashMax = 1300 * 8; /* 1300ms */
VpOptionPulseType::onHookMin = 1300 * 8; /* 1300ms */

DEVICES All

TERMINATIONS FXS

Make

Break
Flash Hook

Min Max

Flash Hook

��
��

Make

Break

Flash
Hook Max

Extended Flash Hook��
��

On Hook
Min

* On-Hook Event is generated if line is on-hook
longer than the onHookMin time

(*)

37

V P A P I - I I U S E R ’ S G U I D E

4.3.2 VP_DEVICE_OPTION_ID_CRITICAL_FLT

4.3.3 VP_OPTION_ID_ZERO_CROSS

DESCRIPTION This option determines whether or not a line is automatically forced into Disconnect mode when a
critical fault (AC, DC, or thermal fault) is detected on that line. Placing the line in Disconnect mode
(VP_LINE_DISCONNECT) involves putting the SLIC device into the Disconnect mode and putting the
LCAS, if present, in All-Off mode. This option is device-specific and applies to all lines controlled by the
VTD. Critical fault option parameters are passed through the VpOptionCriticalFltType structure
shown below.

typedef struct {
bool acFltDiscEn;
bool dcFltDiscEn;
bool thermFltDiscEn;

} VpOptionCriticalFltType;

Setting acFltDiscEn, dcFltDiscEn, or thermFltDiscEn to TRUE enables automatic disconnect
when an AC, DC, or thermal fault is detected, respectively.

Notes:

1. The CSLAC-880, CSLAC-890,and VCP-880 configurations do not support AC/DC fault detection
and therefore automatic disconnect on AC/DC fault. VpSetOption() returns
VP_STATUS_INVALID_ARG if the application attempts to enable automatic disconnect on AC or DC
fault. If the API-II compile time default settings for options used during initialization are inconsistent
with this limitation, the API-II will initialize AC/DC fault to FALSE rather than return an error during
initialization.

2. The relay state (if a relay is defined in the termination type), is set to the least harmful setting allowed
by the configuration without applying Ringing to the subscriber line. The application should set the
relay to VP_RELAY_NORMAL using VpSetRelayState() to return to normal operation.

DEFAULT VpOptionCriticalFltType::acFltDiscEn= TRUE; (FALSE for 880 and 890 devices)
VpOptionCriticalFltType::dcFltDiscEn= TRUE; (FALSE for 880 and 890 devices)
VpOptionCriticalFltType::thermFltDiscEn= TRUE;

DEVICES All

TERMINATIONS FXS

DESCRIPTION The VTD and LCAS (if present) provide automatic Zero-Cross control. The VTD and LCAS will enter
and exit the Ringing state when the line crosses the zero-voltage point (on ring entry) or zero-current
point (on ring exit). This option is line-specific. This option is passed through a variable of type
VpOptionZeroCrossType, shown below.

Enumeration Data Type: VpOptionZeroCrossType:
VP_OPTION_ZC_M4B /* Zero-Cross control - make-before-break */
VP_OPTION_ZC_B4M /* Zero-Cross control - break-before-make */
VP_OPTION_ZC_NONE /* Turn Zero-Cross Control OFF */

Notes:

1. The VTD relay setting must be in VP_RELAY_NORMAL for the VTD to control either variation of the
Zero-Cross Control Option. If the relay setting is not set to VP_RELAY_NORMAL, then the proper
LCAS timing and control will not occur (no operation of the LCAS will occur at all) and any operation
pertaining to LCAS control for ring entry or exit will be the host’s responsibility.

2. The VP_OPTION_ZC_NONE zero-cross option is not supported for the CSLAC-790 and VCP-790
classes of devices.

DEFAULT VP_OPTION_ZC_M4B

DEVICES CSLAC, VCP

TERMINATIONS FXS

38

V P A P I - I I U S E R ’ S G U I D E

4.3.4 VP_DEVICE_OPTION_ID_RAMP2STBY

4.3.5 VP_OPTION_ID_PULSE_MODE

4.3.6 VP_OPTION_ID_TIMESLOT

DESCRIPTION This option sets the voltage ramp speed for any transition from Disconnect to Standby. The time is
specified in 125 µs increments. A time of 0 ms effectively turns off the firmware controlled ramp. Any
calls to VpSetLineState() during the period while a line is being ramped will force the channel
to the new state immediately, terminating the ramp. This option is device-specific and applies to all
lines controlled by the VTD. This option is passed through a variable of type uint16.

Notes:

1. The VCP-880 devices clamp the maximum value that can be specified for this option to 10923.
2. No event is generated upon completion of the ramp.
3. The application should not call the VpTestLine() function during the transition period.

DEFAULT 0

DEVICES VCP

TERMINATIONS FXS

DESCRIPTION The pulse mode option determines whether automatic flash and pulse-digit decode is enabled for a
particular line. This option is line-specific. This option is passed through a variable of type
VpOptionPulseModeType, shown below.

Enumeration Data Type: VpOptionPulseModeType:
VP_OPTION_PULSE_DECODE_OFF
VP_OPTION_PULSE_DECODE_ON

DEFAULT VP_OPTION_PULSE_DECODE_OFF

DEVICES CSLAC, VCP

TERMINATIONS FXS

DESCRIPTION The timeslot option selects the PCM transmit and receive timeslots for the given line. PCM timeslots
are numbered from 0 to max_num_timeslots-1, where max_num_timeslots equals fPCLK KHz /
8 KHz / 8 bits. This option is line-specific. Timeslot option parameters are passed through the
VpOptionTimeslotType structure shown below.

typedef struct {
uint8 tx; /* 8-bit Transmit timeslot */
uint8 rx; /* 8-bit Receive timeslot */

} VpOptionTimeslotType;

Notes:

1. The transmit direction refers to the data transmission from the VTD towards the network. Receive
direction refers to receiving the data from the network to the VTD.

2. The application should assign timeslots before activating the device’s PCM interface. See
VpSetLineState(), on page 84 for more information on which line states activate the PCM
highway.

DEFAULT None

DEVICES CSLAC, VCP

TERMINATIONS All

39

V P A P I - I I U S E R ’ S G U I D E

4.3.7 VP_OPTION_ID_CODEC

4.3.8 VP_OPTION_ID_PCM_HWY

DESCRIPTION The codec option selects the PCM encoding algorithm for the given line. This option is line-specific.
This option is passed through a variable of type VpOptionCodecType, shown below.

Enumeration Data Type: VpOptionCodecType:
VP_OPTION_ALAW /* Select G.711 A-law PCM encoding */
VP_OPTION_MLAW /* Select G.711 Mu-law PCM encoding */
VP_OPTION_LINEAR /* Select Linear PCM encoding */
VP_OPTION_WIDEBAND /* Select Wideband 16-bit, 16kHz PCM encoding */

Notes:

1. The VP_OPTION_WIDEBAND CODEC type is supported for CSLAC-880 and CSLAC-890 devices
only.

2. The VTD requires two adjacent 8-bit timeslots when in 16-bit linear PCM mode. The timeslot
assigned by VP_OPTION_ID_TIMESLOT, on page 38 is the lowest numbered timeslot of
the two timeslots occupied by a single channel in linear mode. Therefore, the host must not
assign the next adjacent timeslot to any other line. The VTD requires two adjacent 8-bit timeslots
at the first programmed timeslot, and two adjacent 8-bit timeslots located at (PCLK Freq /
128*10^3) offset from the programmed timeslot when selecting Wideband mode.

DEFAULT VP_OPTION_ALAW

DEVICES CSLAC, VCP

TERMINATIONS All

DESCRIPTION The PCM highway option selects the PCM highway for the given line. This option is line-specific.
This option is passed through a variable of type VpOptionPcmHwyType, shown below.

Enumeration Data Type: VpOptionPcmHwyType:
VP_OPTION_HWY_A /* Select the "A" PCM Highway */
VP_OPTION_HWY_B /* Select the "B" PCM Highway */
VP_OPTION_HWY_TX_A_RX_B /* Transmit on "A", receive on "B" */
VP_OPTION_HWY_TX_B_RX_A /* Transmit on "B", receive on "A" */
VP_OPTION_HWY_TX_AB_RX_A /* Transmit on "A" and "B", receive on "A" */
VP_OPTION_HWY_TX_AB_RX_B /* Transmit on "A" and "B", receive on "B" */

Notes:

1. The VP_OPTION_HWY_A is only supported option for CSLAC-880 and CSLAC-890 devices.
2. The VP_OPTION_HWY_A and VP_OPTION_HWY_B are only supported options for CSLAC-790,

CSLAC-580, and VCP1.
3. VCP2 supports all options.

DEFAULT VP_OPTION_HWY_A

DEVICES CSLAC, VCP

TERMINATIONS All

40

V P A P I - I I U S E R ’ S G U I D E

4.3.9 VP_OPTION_ID_LOOPBACK

4.3.10 VP_OPTION_ID_LINE_STATE

DESCRIPTION The loopback option controls the loop back mode of the given line. This option is line-specific. This
option is passed through a variable of type VpOptionLoopbackType, shown below.

Enumeration Data Type: VpOptionLoopbackType:
VP_OPTION_LB_OFF /* All loopbacks off */
VP_OPTION_LB_TIMESLOT /* Perform a timeslot loopback */
VP_OPTION_LB_DIGITAL /* Perform a full-digital loopback */

Refer to the appropriate device’s Chip Set User’s Guide for details about each loopback mode.

Notes:

The VCP-880, CSLAC-880, and CSLAC-890 configurations do not support full-digital loopback
mode.

DEFAULT VP_OPTION_LB_OFF

DEVICES All

TERMINATIONS All

DESCRIPTION If the device controlled by the VP-API-II supports different battery levels, then the line state option
allows for these modifiers to be applied to the appropriate line state. Thus, when a line of the device
is subsequently placed in a particular state, the modifiers defined by the line state option are
automatically applied where appropriate. This option is passed through the
VpOptionLineStateType structure shown below.

typedef struct {
bool battRev; /* Smooth/abrupt Bat reversal; TRUE=abrupt */
VpOptionBatType bat; /* Battery selection for active line states */

} VpOptionLineStateType;

When the battRev variable is set to FALSE, it forces a smooth voltage change when the line state
is changed from any of the following states: VP_LINE_ACTIVE, VP_LINE_ACTIVE_POLREV,
VP_LINE_TALK, and VP_LINE_TALK_POLREV to any state in that same list and of opposite
polarity. Otherwise, the transition between these states is abrupt. The smooth ramp time is
approximately 64 ms and is not programmable. Any other state transition (including polarity
reversals with the battRev variable is set to TRUE) uses the abrupt mode.

The bat battery modifier option can be any of the following enumeration constants:

Enumeration Data Type: VpOptionBatType:
VP_OPTION_BAT_AUTO /* Automatic battery selection */
VP_OPTION_BAT_HIGH /* Use high and pos batt for active line states */
VP_OPTION_BAT_LOW /* Use low battery for active line states */
VP_OPTION_BAT_BOOST /* Utilize positive batt for active states */

See the device’s Chip Set User’s Guide for further information about polarity and battery levels.
Note that the specific modifier options available depend upon the device controlled by the VP-API-II.

Notes:

1. This option allows the application to minimize power dissipation due to DC feed by selecting the
most appropriate battery supply for each line. Also, using smooth battery reversal can reduce
noise on the line when the polarity is reversed.

2. The only battery type that is supported for CSLAC-880, CSLAC-890, and VCP-880 class of
devices is VP_OPTION_BAT_AUTO.

DEFAULT VpOptionLineStateType::battRev = FALSE;
VpOptionLineStateType::bat = VP_OPTION_BAT_AUTO;

DEVICES All

TERMINATIONS FXS

41

V P A P I - I I U S E R ’ S G U I D E

4.3.11 VP_OPTION_ID_EVENT_MASK
DESCRIPTION This option determines which events are reported for a given line. This option is line-specific. The

event mask option is passed though the VpOptionEventMaskType structure shown below.

typedef struct {
uint16 faults; /* Fault event category masks */
uint16 signaling; /* Signaling event category masks */
uint16 response; /* Mailbox response event category masks */
uint16 test; /* Test events */
uint16 process; /* Call process event category masks */
uint16 fxo; /* FXO event category masks */
uint16 packet; /* Packet events category masks */

} VpOptionEventMaskType;

This structure contains a 16-bit mask for each event category (faults, signaling, etc.). An event that
is masked is not reported to the application. The composite masks for each event category are
created by logically summing (using the bitwise or operation) the event ID constants of the individual
events within that category. When building the composite event mask for a particular event category,
the application should only sum individual event ID constants belonging to that event category. The
following enumeration types define the event ID constants in the source code:

• VpFaultEventType
• VpSignalingEventType
• VpResponseEventType
• VpTestEventType
• VpProcessEventType
• VpFxoEventType
• VpPacketEventType

These event types are described in Chapter 5. Some event are device-specific, and some events
are line-specific. Setting a device-specific event mask for an individual line effectively changes that
mask for all other lines controlled by that VTD. To avoid confusion, the application should always set
device-specific event masks for individual lines to the same value across all lines of a VTD. The
application must take care not to accidentally change a device-specific event mask when modifying
other event masks for an individual line. Refer to VpSetOption(), on page 95 for more information
on how device-specific and line-specific options are applied based on the values of pDevCtx and
pLineCtx.

Notes:
1. Changing the event mask does not affect events that are already in the event queue, waiting to

be delivered to the application. Therefore, it is possible for the application to receive an event
even after having masked that type of event.

2. Some events are non-maskable. The mask bits corresponding to these events are ignored. Refer
to Chapter 5 for details.

DEFAULT All events are masked except for non-maskable events.

DEVICES All

TERMINATIONS All

42

V P A P I - I I U S E R ’ S G U I D E

4.3.12 VP_OPTION_ID_RING_CNTRL
DESCRIPTION This option configures the ring-trip attributes of a line. This option is line-specific. The ring-trip control

option is passed though the VpOptionRingControlType structure shown below.

typedef struct {
VpOptionZeroCrossType zeroCross;
uint16 ringExitDbncDur;
VpLineStateType ringTripExitSt;

} VpOptionRingControlType;

The zeroCross parameter controls exactly the same setting as the VP_OPTION_ID_ZERO_CROSS
option. That is, VP_OPTION_ID_RING_CNTRL and VP_OPTION_ID_ZERO_CROSS modify the same
internal VCP/VP-API-II internal variable. The only difference between these two options is that
VP_OPTION_ID_RING_CNTRL allows the application to set the ring-exit debounce time and ring-exit
line state as well. See VP_OPTION_ID_ZERO_CROSS, on page 37 for more information on
zero-cross control settings.

The ringExitDbncDur variable determines the ring-exit debounce time when the VTD is
implementing ringing cadencing and is specified in units of 125 µs. The ring-exit debounce period
starts at the end of each ringing-on period of the ringing cadence. This debounce time helps filter
false hook events during transitions from the ringing-on state to the ringing-off state, caused by the
physical characteristics of the line. No hook-switch events are reported during this period. Ring-exit
hook debouncing can be disabled by setting this variable to 0.

Finally, the ringTripExitSt parameter determines which state the line is automatically switched to
when ring-trip occurs. This feature can be effectively disabled by setting ringTripExitSt to the
active ringing state (i.e. VP_LINE_RINGING or VP_LINE_RINGING_POLREV).

Notes:

The CSLAC-880, CSLAC-890 and VCP-880 configurations do not allow ringing into an off-hook
phone. If ringTripExitSt is set to VP_LINE_RINGING or VP_LINE_RINGING_POLREV, the 880
and 890 device actually puts the line in the VP_LINE_TALK state when ring-trip occurs.

DEFAULT VpOptionRingControlType::zeroCross = VP_OPTION_ZC_M4B;
VpOptionRingControlType::ringExitDbncDur = 100 * 8; /* 100ms */
VpOptionRingControlType::ringTripExitSt = VP_LINE_TALK;

DEVICES CSLAC, VCP

TERMINATIONS FXS

43

V P A P I - I I U S E R ’ S G U I D E

4.3.13 VP_OPTION_ID_DTMF_MODE
DESCRIPTION This option configures DTMF detection for a given line. This option is line-specific. The DTMF mode

option is passed though the VpOptionDtmfModeControlType structure shown below.

typedef struct {
VpOptionDtmfModeControlType dtmfControlMode;
VpDirectionType direction;
uint32 dtmfDetectionSetting;
uint8 dtmfResourcesRemaining;

 uint8 dtmfDetectionEnabled[VP_LINE_FLAG_BYTES]
} VpOptionDtmfModeType;

The dtmfControlMode parameter determines whether DTMF detection is enabled, disabled, or
unchanged when this option is set. This variable can take any of the following values:

Enumeration Data Type: VpOptionDtmfModeControlType:
VP_OPTION_DTMF_DECODE_OFF /* Turn OFF DTMF decoding */
VP_OPTION_DTMF_DECODE_ON /* Turn ON DTMF decoding */
VP_OPTION_DTMF_GET_STATUS /* Just get the status of DTMF resources */

If dtmfControlMode is set to VP_OPTION_DTMF_GET_STATUS then the DTMF detection setting
is unchanged, and the dtmfDetectionSetting and dtmfResourcesRemaining variables are
updated.

The direction parameter determines whether DTMF detection is performed in the upstream
(VP_DIRECTION_US) or downstream (VP_DIRECTION_DS) direction. VCP devices only support
upstream DTMF detection.

Each bit in the dtmfDetectionEnabled field represents the DTMF detection setting of a line
controlled by the VTD. This variable is overwritten by the VP-API-II with the current DTMF detection
settings when VpSetOption() is called.

 The number of array elements, VP_LINE_FLAG_BYTES = (VP_MAX_LINES_PER_DEVICE + 7)
/ 8, is the number of eight-bit integers required to store a flag for each channel in the device.
VP_MAX_LINES_PER_DEVICE is a compile-time option defined in vp_api_cfg.h. Bit 0 in array
element 0 represents line 0, bit 1 represents line 1, and so on. Bit 0 in array element 1 represents
line 8.

The dtmfDetectionSetting field contains the same data as the first four elements of the
dtmfDetectionEnabled array. This field is included for backward-compatibility. For devices
with more than 32 lines, this variable only contains information about the first 32 lines.

The dtmfResourcesRemaining field indicates the number of DTMF detection resources
available after applying the current option setting. The total number of DTMF detection resources
varies between the VTD types. The VPP devices support DTMF detection on all channels
simultaneously, but the VCP devices do not. This parameter allows the application to determine the
number of DTMF resources available at run-time.

If the number of DTMF resources supported by the VCP is less than the number of lines controlled
by the VCP, then the application may need to implement an algorithm that only enables DTMF
decoding for an individual line when absolutely necessary. For example, the application could
enable DTMF decoding on a line when that line transitions to the off-hook state, and then disable
DTMF decoding when the dialing sequence is complete. Alternatively, DTMF decoding could be
enabled as long as the line is off-hook. The latter method might reserve DTMF decoding resources
for an unnecessarily long time though.

DEFAULT VpOptionDtmfModeType::dtmfControlMode = VP_OPTION_DTMF_DECODE_OFF;
VpOptionDtmfModeType::direction = VP_DIRECTION_US;

DEVICES VCP, VPP

TERMINATIONS FXS

44

V P A P I - I I U S E R ’ S G U I D E

4.3.14 VP_DEVICE_OPTION_ID_DEVICE_IO
DESCRIPTION This option controls the device-specific input/output (I/O) pin configuration. The number of I/O pins

configurable through this option is dictated by the reference design (VTD and termination type) being
used. Only those I/O pins that are not reserved by the reference design for driving LCAS devices or
relays can be controlled by this option. The application must not attempt to control I/O pins that are
reserved by the reference design. The VP-API-II performs no error checking on this option. The I/O
pin restrictions for each reference design type are as follows:

• Generic FXS Termination / VCP-790
Each channel has one available I/O pin (assuming Le79228 SLAC 80-pin package).
The output type cannot be changed.

• Generic FXS Termination / VCP-880
Each channel has two available I/O pins.
The output type can be changed for I/O Pin 0 but not for I/O Pin 1.

• FXS with Test Out Relay / VCP-790
Each channel has one available I/O pin (assuming Le79228 SLAC 80-pin package).
The output type cannot be changed.

• FXS with LCAS / VCP-790
No I/O pins available.

The I/O configuration option is passed though the VpOptionDeviceIoType structure shown below.

typedef struct {
uint32 directionPins_31_0;
uint32 directionPins_63_32;
uint32 outputTypePins_31_0;
uint32 outputTypePins_63_32;

} VpOptionDeviceIoType;

The directionPins_63_32 and directionPins_31_0 variables are combined to make a
single 64-bit direction field, where each bit determines whether an individual pin is an input (0) or
output (1). For a configuration that supports only one user I/O pin per channel, direction[N] sets
the direction for the I/O pin belonging to channel N. For a configuration that supports two user I/O pins
per channel, direction[2N] sets the direction for I/O Pin 0 belonging to channel N, and
direction[2N+1] sets the direction for I/O Pin 1 belonging to channel N. Unused direction bits
that do not map to a channel/pin are ignored.

The outputTypePins_63_32 and outputTypePins_31_0 variables are mapped in a similar
fashion. Each bit in outputType determines whether a single pin is configured as a TTL/CMOS
output (VP_OUTPUT_DRIVEN_PIN) or open-collector/open-drain (VP_OUTPUT_OPEN_PIN) output.

Notes:

In VCP-VE790 configurations, the GPIO pins are derived from the SLAC I/O pins. Thus, if a SLAC
device is not present on a given chip select of the VCP, the direction and output type information
reported upon reading this option is meaningless.

DEFAULT None, VTDs retain their hardware reset value.

DEVICES All

TERMINATIONS All

45

V P A P I - I I U S E R ’ S G U I D E

4.3.15 VP_OPTION_ID_PCM_TXRX_CNTRL
DESCRIPTION This line-specific option enables or disables the PCM transmit and receive paths in line states that use

the PCM highway, including: VP_LINE_TALK, VP_LINE_TALK_POLREV, VP_LINE_OHT, and
VP_LINE_OHT_POLREV. This option can take any of the following values:

Enumeration Data Type: VpOptionPcmTxRxCntrlType:
VP_OPTION_PCM_BOTH /* Enable both PCM transmit and receive paths */
VP_OPTION_PCM_RX_ONLY /* Enable PCM receive path only */
VP_OPTION_PCM_TX_ONLY /* Enable PCM transmit path only */

Notes:

Line state transitions (requested through VpSetLineState(), on page 84) do not change this option.

DEFAULT VP_OPTION_PCM_BOTH

DEVICES CSLAC, VCP

TERMINATIONS All

46

V P A P I - I I U S E R ’ S G U I D E

4.3.16 VP_DEVICE_OPTION_ID_DEV_IO_CFG
DESCRIPTION This option configures the general-purpose input/output (GPIO) pins controlled by a device. New

applications should use this option instead of VP_DEVICE_OPTION_ID_DEVICE_IO.

The arguments to this option are passed to VpSetOption() in a VpOptionDeviceIoConfigType
struct:

typedef struct {
 VpOptionLineIoConfigType lineIoConfig[VP_MAX_LINES_PER_DEVICE];
VpOptionDeviceIoConfigType;

where VP_MAX_LINES_PER_DEVICE is a compile-time option specified in vp_api_cfg.h. The
lineIoConfig array (indexed by channel ID) contains a VpOptionLineIoConfigType struct for
each line controlled by the device. For each element of lineIoConfig, the array index equals the
channel ID. Please see the VP_OPTION_ID_LINE_IO_CFG description on page 47 for futher
information about VpOptionLineIoConfigType.

DEFAULT None; VTDs retain their hardware reset value.

DEVICES VCP2

TERMINATIONS All

47

V P A P I - I I U S E R ’ S G U I D E

4.3.17 VP_OPTION_ID_LINE_IO_CFG
DESCRIPTION This option configures the general-purpose input/output (GPIO) pins associated with a particular line.

The number of I/O pins configurable through this option for each line is dictated by the reference
design (VTD and line termination type) being used. I/O pins that are reserved by the reference design
for driving LCAS devices or relays (using the VpSetRelayState() function) cannot be configured by
this option.

The arguments to this option are passed to VpSetOption() in a VpOptionLineIoConfigType
struct:

typedef struct {
 uint8 direction;
 uint8 outputType;
} VpOptionLineIoConfigType;

Up to eight GPIO pins per channel can be configured. Each bit in the direction field specifies for
an individual GPIO pin whether it is an input (0) or output (1). The corresponding bit in the
outputType field specifies whether the pin (if configured as an output) is a TTL/CMOS output (0)
or open-collector/open-drain (1) output.

typedef enum {
 VP_IO_INPUT_PIN = 0,
 VP_IO_OUTPUT_PIN = 1
} VpDeviceIoDirectionType;

typedef enum {
 VP_OUTPUT_DRIVEN_PIN = 0,
 VP_OUTPUT_OPEN_PIN = 1
} VpDeviceOutputPinType;

The following table shows for each VTD and line termination type which GPIO pins can be configured
by setting the correponding bits in the direction and outputType fields. Bits that are 0 in the
table are ignored in these fields.

Note: In VCP configurations, the GPIO pins refer to the SLAC I/O pins. Thus, if a SLAC device is not
present on a given chip select of the VCP, the direction and output type information for that chip-
select is meaningless.

DEFAULT None, VTDs retain their hardware reset value.

DEVICES VCP2

TERMINATIONS All

VTD(s) Line Termination Type Bitmask

VCP2-790

VP_TERM_FXS_GENERIC 00001011

VP_TERM_FXS_TITO_TL_R 00001000

VP_TERM_FXS_CO_TL 00001001

VP_TERM_FXS_75181 00001110

VP_TERM_FXS_75282 00000000

VP_TERM_FXS_RDT 00001001

VP_TERM_FXS_RR 00001001

VP_TERM_FXS_TO_TL 00001001

48

V P A P I - I I U S E R ’ S G U I D E

4.3.18 VP_OPTION_ID_DTMF_SPEC
DESCRIPTION This option selects the DTMF detection criteria (based on region specifications) to be associated with

a particular line.

The arguments to this option are passed to VpSetOption() in a VpOptionDtmfSpecType:

Enumeration Data Type: VpOptionDtmfSpecType:
VP_OPTION_DTMF_SPEC_ATT /* Q.24 AT&T */
VP_OPTION_DTMF_SPEC_NTT /* Q.24 NTT */
VP_OPTION_DTMF_SPEC_AUS /* Q.24 Australian */
VP_OPTION_DTMF_SPEC_BRZL /* Q.24 Brazilian */
VP_OPTION_DTMF_SPEC_ETSI /* ETSI ES 201 235-3 v1.3.1 */

DEFAULT VP_OPTION_DTMF_SPEC_ATT

DEVICES VCP2

TERMINATIONS All

CHAPTER

49

5 EVENTS

5.1 OVERVIEW

The VP-API-II uses an abstract event type to report VTD events to the host application. These
events typically correspond to asynchronous VTD interrupts or occur as a result of some command
issued by the application. VP-API-II events are organized into categories, with several events in
each category. Each event may have some combination of a time stamp, a handle, event data, or
event results attached to the event. This chapter covers all VP-API-II events in detail and describes
the data types attached to each event. Each event is described using the following format:

The VP-API-II functions related to event reporting are described elsewhere in this document.

• VpGetEvent(), on page 104
• VpFlushEvents(), on page 111
• VpGetResults(), on page 112
• VpClearResults(), on page 113
• VpSetOption(), on page 95 with VP_OPTION_ID_EVENT_MASK, on page 41
• VpGetOption(), on page 109 with VP_OPTION_ID_EVENT_MASK, on page 41

5.2 EVENT SUMMARY

Table 5–1 on page 50 lists all events that the VP-API-II can generate. The events are organized into
categories, and these categories are defined in the software by the VpEventCategoryType
enumeration. Notice that some events apply only to certain device types. The application will never

DESCRIPTION This is a summary description of the event and what causes it.

T.S. OR HANDLE An event can have a time stamp, user defined handle, or event specific value associated with it.

• Event time stamps are reported as 16-bit integers in units of 0.5 ms.
• Event handles are 16-bit variables that the application can use to associate an event with a prior

command. For some VP-API-II functions, the application can provide a handle that is returned
with the event carrying the results for that function. The VP-API-II does not use the handle in any
way; it simply passes the handle back to the application with an event. The application can use
the handle for any purpose, or ignore it altogether.

• Some events use neither the time stamp nor the handle, in which case this field may be marked
"N/A."

EVENT DATA Every event carries a 16-bit variable that may contain a small amount of data associated with the
event. The meaning of this variable is described for each individual event. Some events do not use
this variable, in which case this field is marked "N/A."

RESULTS Some events have data associated with them that is larger than the 16-bit event data variable. The
VP-API-II uses the concept of a mailbox to pass this data back to the application. The application
can call VpGetResults() to retrieve the event data from the mailbox. The type of the result data is
described in this section for each event. If an event has results associated with it but the application
does not care about the results, the application must call VpClearResults() to empty the mailbox
anyway. Some events do not have such results, in which case this field is marked "N/A."

DEVICES This field lists the devices (CSLAC, VCP, VPP, All) that can generate the event.

TERMINATIONS This field lists the termination types (FXS, FXO, All) that can generate the event. Termination type
"All" means either all termination types supported by the applicable devices, or the termination type
is not relevant to the event.

50

V P A P I - I I U S E R ’ S G U I D E

receive an event that is not generated by the device type(s) used in the system. Some event are
device-specific, and some events are line-specific. The names of device-specific events begin with
VP_DEV_EVID_, while the names of line-specific events begin with VP_LINE_EVID_.

Table 5–1 List of VP-API-II Events

Event ID Devices Terminations Page

Fault Events

VP_DEV_EVID_BAT_FLT All All 53

VP_DEV_EVID_CLK_FLT All All 53

VP_LINE_EVID_THERM_FLT All FXS 53

VP_LINE_EVID_DC_FLT CSLAC-790, VCP-790, VPP FXS 54

VP_LINE_EVID_AC_FLT CSLAC-790, VCP-790, VPP FXS 54

VP_DEV_EVID_EVQ_OFL_FLT VCP, VPP All 54

VP_DEV_EVID_WDT_FLT VCP, VPP All 54

Signaling Events

VP_LINE_EVID_HOOK_OFF All FXS 55

VP_LINE_EVID_HOOK_ON All FXS 55

VP_LINE_EVID_GKEY_DET All FXS 55

VP_LINE_EVID_GKEY_REL All FXS 56

VP_LINE_EVID_FLASH All FXS 56

VP_LINE_EVID_STARTPULSE All FXS 56

VP_LINE_EVID_DTMF_DIG All FXS 57

VP_LINE_EVID_PULSE_DIG All FXS 57

VP_LINE_EVID_MTONE VCP, VPP FXS 57

VP_DEV_EVID_TS_ROLLOVER All All 57

VP_LINE_EVID_US_TONE_DETECT VPP All

VP_LINE_EVID_DS_TONE_DETECT VPP All

VP_DEV_EVID_SEQUENCER VPP All

VP_LINE_EVID_EXTD_FLASH CSLAC FXS 56

Response Events

VP_DEV_EVID_BOOT_CMP VCP, VPP All 58

VP_LINE_EVID_LLCMD_TX_CMP All All 58

VP_LINE_EVID_LLCMD_RX_CMP All All 59

VP_DEV_EVID_DNSTR_MBOX VCP, VPP All 59

VP_LINE_EVID_RD_OPTION All All 59

VP_LINE_EVID_RD_LOOP CSLAC-790, VCP, VPP FXS 60

VP_EVID_CAL_CMP CSLAC-790, VCP-790 All 61

51

V P A P I - I I U S E R ’ S G U I D E

VP_EVID_CAL_BUSY CSLAC-790, VCP-790 All 62

VP_LINE_EVID_GAIN_CMP VCP, CSLAC-880, CSLAC-890 All 62

VP_DEV_EVID_DEV_INIT_CMP All All 62

VP_LINE_EVID_LINE_INIT_CMP All All 63

VP_DEV_EVID_IO_ACCESS_CMP All All 63

VP_LINE_EVID_LINE_IO_RD_CMP VCP2 All 64

VP_LINE_EVID_LINE_IO_WR_CMP VCP2 All 64

Test Events

VP_LINE_EVID_TEST_CMP VCP-790-BT, VCP-790-AT, VPP FXS

VP_LINE_EVID_DTONE_DET VCP-790-AT FXS

VP_LINE_EVID_DTONE_LOSS VCP-790-AT FXS

VP_DEV_EVID_STEST_CMP VCP All 65

VP_DEV_EVID_CHKSUM VCP, VPP All 65

Process Events

VP_LINE_EVID_MTR_CMP All FXS 66

VP_LINE_EVID_MTR_ABORT All FXS 66

VP_LINE_EVID_MTR_CAD VCP-790 FXS 66

VP_LINE_EVID_CID_DATA All FXS 67

VP_LINE_EVID_RING_CAD All FXS 67

VP_LINE_EVID_SIGNAL_CMP CSLAC, VCP All 67

VP_LINE_EVID_TONE_CAD All All 68

FXO Events

VP_LINE_EVID_RING_ON CSLAC FXO

VP_LINE_EVID_RING_OFF CSLAC FXO

VP_LINE_EVID_LIU CSLAC FXO

VP_LINE_EVID_LNIU CSLAC FXO

VP_LINE_EVID_FEED_DIS CSLAC FXO

VP_LINE_EVID_FEED_EN CSLAC FXO

VP_LINE_EVID_DISCONNECT CSLAC FXO

VP_LINE_EVID_RECONNECT CSLAC FXO

VP_LINE_EVID_POLREV CSLAC FXO

Packet Events

VP_LINE_EVID_US_PKT_RDY VPP All

VP_LINE_EVID_NEED_DS_PKT VPP All

52

V P A P I - I I U S E R ’ S G U I D E

VP_LINE_EVID_PKT_ERROR VPP All

VP_LINE_EVID_PKT_LOST VPP All

VP_LINE_EVID_RD_PKT_STATS VPP All

53

V P A P I - I I U S E R ’ S G U I D E

5.3 FAULT EVENTS

The fault events report critical VTD errors. The set of valid fault events is defined in the software by
the VpFaultEventType enumeration.

5.3.1 VP_DEV_EVID_BAT_FLT

5.3.2 VP_DEV_EVID_CLK_FLT

5.3.3 VP_LINE_EVID_THERM_FLT

DESCRIPTION This event occurs when a battery fault is detected or is no longer detected. Refer to the appropriate
Chip Set User’s Guide for details on the battery fault condition.

T.S. OR HANDLE N/A

EVENT DATA Event data indicates the source of the battery fault and can be any of the values shown below. See
Battery Name Interpretation, on page 61 for battery mapping.

Enumeration Data Type: VpBatFltEventDataType:
VP_BAT_FLT_NONE = 0x00 /* No battery fault */
VP_BAT_FLT_BAT1 = 0x02 /* Battery 1 fault */
VP_BAT_FLT_BAT2 = 0x01 /* Battery 2 fault */
VP_BAT_FLT_BAT3 = 0x04 /* Battery 3 fault */

RESULTS N/A

DEVICES All

TERMINATIONS All

DESCRIPTION This event occurs when a clock fault is detected or is no longer detected. Refer to the appropriate
Chip Set User’s Guide for details on the clock fault condition.

T.S. OR HANDLE N/A

EVENT DATA Event data bit 0 indicates whether the fault condition is present (1) or absent (0). The VCP device
can also experience a clock fault, in addition to the SLAC device clock fault reported in bit 0. The VCP
device clock fault state is reported in bit 15 of this field. VCP clock fault is not reported by the current
VCP firmware.

RESULTS N/A

DEVICES All

TERMINATIONS All

DESCRIPTION This event occurs when a thermal fault is detected or is no longer detected. The line may be forced
into the Disconnect mode when this event occurs, depending on how the
VP_DEVICE_OPTION_ID_CRITICAL_FLT option is configured (see Section 4.3.2). Refer to the
appropriate Chip Set User’s Guide for details on the thermal fault condition.

T.S. OR HANDLE N/A

EVENT DATA Event data bit 0 indicates whether the fault condition is present (1) or absent (0).

RESULTS N/A

DEVICES All

TERMINATIONS FXS

54

V P A P I - I I U S E R ’ S G U I D E

5.3.4 VP_LINE_EVID_DC_FLT

5.3.5 VP_LINE_EVID_AC_FLT

5.3.6 VP_DEV_EVID_EVQ_OFL_FLT

5.3.7 VP_DEV_EVID_WDT_FLT

DESCRIPTION This event occurs when a DC fault is detected or is no longer detected. The line may be forced into
the Disconnect mode when this event occurs, depending on how
VP_DEVICE_OPTION_ID_CRITICAL_FLT is configured (see Section 4.3.2). Refer to the
appropriate Chip Set User’s Guide for details on the DC fault condition.

T.S. OR HANDLE N/A

EVENT DATA Event data bit 0 indicates whether the fault condition is present (1) or absent (0).

RESULTS N/A

DEVICES CSLAC-790, VCP-790, VPP

TERMINATIONS FXS

DESCRIPTION This event occurs when a AC fault is detected or is no longer detected. The line may be forced into
the Disconnect mode when this event occurs, depending on how
VP_DEVICE_OPTION_ID_CRITICAL_FLT is configured (see Section 4.3.2). Refer to the
appropriate Chip Set User’s Guide for details on the AC fault condition.

T.S. OR HANDLE N/A

EVENT DATA Event data bit 0 indicates whether the fault condition is present (1) or absent (0).

RESULTS N/A

DEVICES CSLAC-790, VCP-790, VPP

TERMINATIONS FXS

DESCRIPTION This event occurs when the VTD event queue overflows, which results from the host microprocessor
failing to retrieve events in a timely manner.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES VCP, VPP (Current VCP firmware does not generate this event.)

TERMINATIONS All

DESCRIPTION This event occurs when the VTD internal watchdog timer expires, implying that the VTD firmware has
hung.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES VCP, VPP (Current VCP firmware does not generate this event.)

TERMINATIONS All

55

V P A P I - I I U S E R ’ S G U I D E

5.4 SIGNALING EVENTS

The signaling events report changes on an individual line. The set of valid signaling events is
defined in the software by the VpSignalingEventType enumeration.

5.4.1 VP_LINE_EVID_HOOK_OFF

5.4.2 VP_LINE_EVID_HOOK_ON

5.4.3 VP_LINE_EVID_GKEY_DET

DESCRIPTION The behavior of this event depends on whether pulse-digit decoding is enabled or disabled. See
VP_DEVICE_OPTION_ID_PULSE, on page 35 for details.

If pulse-digit decoding is enabled, this event occurs when the VTD/VP-API-II determines that the line
is off-hook beyond the pulse-digit make period. In other words, this event does not occur during pulse
dialing.

If pulse-digit decoding is disabled, this event occurs every time the VTD/VP-API-II detects the off-
hook condition. This event is reported during pulse dialing.

T.S. OR HANDLE Time stamp

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION The behavior of this event depends on whether pulse-digit decoding is enabled or disabled. See
VP_DEVICE_OPTION_ID_PULSE, on page 35 for details.

If pulse-digit decoding is enabled, this event occurs when the VTD/VP-API-II determines that the line
is on-hook beyond the pulse-digit break period and hook flash period. In other words, this event does
not occur during pulse dialing or a hook-switch flash. The exception is when an invalid pulse train is
detected and an on-hook occurs while monitoring the pulse train. In that case, only an on-hook event
is generated rather than an invalid digit.

If pulse-digit decoding is disabled, this event occurs every time the VTD/VP-API-II detects the on-
hook condition. This event is reported during pulse dialing and a hook-switch flash.

T.S. OR HANDLE Time stamp

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs when the ground-key condition is detected, which is used in ground-start signaling.
If the system does not support ground-start signaling, then this condition could indicate a DC fault on
the line.

T.S. OR HANDLE Time stamp

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS FXS

56

V P A P I - I I U S E R ’ S G U I D E

5.4.4 VP_LINE_EVID_GKEY_REL

5.4.5 VP_LINE_EVID_FLASH

5.4.6 VP_LINE_EVID_STARTPULSE

5.4.7 VP_LINE_EVID_EXTD_FLASH

DESCRIPTION This event occurs when the ground-key condition is no longer detected (ground-key release).

T.S. OR HANDLE Time stamp

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event indicates that a hook-switch flash was detected. This event only occurs if pulse-digit
decoding is enabled via VpSetOption(). See VP_DEVICE_OPTION_ID_PULSE, on page 35
for details.

T.S. OR HANDLE Time stamp

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs when the start of a pulse digit or flash has been detected. This is useful for
determining when to turn-off dial tone at the start of dialing. This event only occurs if pulse-digit
decoding is enabled via VpSetOption(). See VP_DEVICE_OPTION_ID_PULSE, on page 35
for details.

T.S. OR HANDLE Time stamp

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs when an extended flash hook has been detected. This is useful for determining
detection of "new call" request (flash duration longer than "hook flash" but less than "on hook"). This
event only occurs if pulse-digit decoding is enabled via VpSetOption(). See
VP_DEVICE_OPTION_ID_PULSE, on page 35 for details.

T.S. OR HANDLE Time stamp

EVENT DATA N/A

RESULTS N/A

DEVICES CSLAC

TERMINATIONS FXS

57

V P A P I - I I U S E R ’ S G U I D E

5.4.8 VP_LINE_EVID_DTMF_DIG

5.4.9 VP_LINE_EVID_PULSE_DIG

5.4.10 VP_LINE_EVID_MTONE

5.4.11 VP_DEV_EVID_TS_ROLLOVER

DESCRIPTION This event occurs at the beginning and end of DTMF digit detection.

T.S. OR HANDLE Time stamp

EVENT DATA Event data bits 3 to 0 contain the received digit information, which can be decoded by comparing with
the VpDigitType (see VpSetLineTone(), on page 86) enumeration constants. Bit 4 indicates
whether this event corresponds to the start (1) or the end (0) of the DTMF digit.

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs when a pulse digit is detected.

T.S. OR HANDLE ’0’ if the digit detected meets the parameters specified by VP_DEVICE_OPTION_ID_PULSE, ’1’ if
the digit detected meets the parameters specified by VP_DEVICE_OPTION_ID_PULSE2.

EVENT DATA Event data bits 3 to 0 contain the received digit information, which can be decoded by comparing with
the VpDigitType enumeration constants. Event data will be VP_DIG_NONE if while monitoring the
pulse train, any digit fails to meet the breakMin, breakMax, makeMin, makeMax, or if an on-hook
occurs within the interDigitMin time specified by VP_DEVICE_OPTION_ID_PULSE and
VP_DEVICE_OPTION_ID_PULSE2 (if VP_DEVICE_OPTION_ID_PULSE2 is supported by
the device).

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs when a modem tone is detected.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES VCP, VPP

TERMINATIONS FXS

DESCRIPTION This event occurs when the VP-API-II time stamp counter rolls-over from 65535 to 0. Since this
counter is incremented every 0.5 ms, it rolls-over every 32.768 seconds.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS All

58

V P A P I - I I U S E R ’ S G U I D E

5.5 RESPONSE EVENTS

The response events occur as a result of some action initiated by the application. Several of these
events have extended results data associated with them. The set of valid response events is
defined in the software by the VpResponseEventType enumeration.

5.5.1 VP_DEV_EVID_BOOT_CMP

5.5.2 VP_LINE_EVID_LLCMD_TX_CMP

DESCRIPTION This event indicates when the VTD boot-load and initialization sequence is done. Refer to
VpBootLoad(), on page 70 for information on the boot-load process.

This event is non-maskable.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS The event results contains the calculated checksum and the hardware and firmware version
information, passed through the VpChkSumType structure shown below.

typedef struct {
uint32 loadChecksum; /* Calculated Checksum for Code Image */
VpVersionInfoType vInfo; /* Version Information for VTD HW/SW */

} VpChkSumType;

typedef struct {
uint16 vtdRevCode, /* Silicon Revision for VTD */
uint8 swProductId, /* VTD Firmware ID */
uint8 swVerMajor, /* Major Revision for VTD Firmware */
uint8 swVerMinor, /* Minor Revision for VTD Firmware */

} VpVersionInfoType;

The returned checksum is computed immediately following the boot-load process when the loaded
image is first executed. By default, the unused RAM is not cleared, so the exact checksum value is
dependant on the RAM’s power-on state. Once loaded, the checksum does not change, but from one
power-on cycle to the next the calculated checksum may vary. To have the same checksum across
power-on cycles, use the VP_CLEAR_CODE_MEM compile-time option in vp_api_cfg.h to clear the
VTD RAM prior to loading the first block. Enabling this option increases the load time and compiled
VP-API-II code size slightly.

The VCP device supports both VE790 and VE880 SLAC devices with different software loads. The
type of software loaded into the VCP can be determined by inspecting the most-significant bit of
vInfo.swProductId result. If this bit is zero, the software supports VE790 devices; otherwise, the
software supports VE880 devices.

DEVICES VCP, VPP

TERMINATIONS All

DESCRIPTION This event occurs after a low-level write command is issued to a device. Refer to
VpLowLevelCmd(), on page 98 for information on issuing low-level commands.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS All

59

V P A P I - I I U S E R ’ S G U I D E

5.5.3 VP_LINE_EVID_LLCMD_RX_CMP

5.5.4 VP_DEV_EVID_DNSTR_MBOX

5.5.5 VP_LINE_EVID_RD_OPTION

DESCRIPTION This event occurs after a low-level read command is issued to a device and the resulting data is
available. Refer to VpLowLevelCmd(), on page 98 for information on issuing low-level
commands.

This event is non-maskable.

T.S. OR HANDLE Handle

EVENT DATA N/A

RESULTS The application must call VpGetResults() with a pointer to a byte (uint8) buffer into which the
resulting data is copied. The application is responsible for allocating enough storage for the data
string and is responsible for interpreting the data. Note that the number of bytes copied into the result
buffer is equivalent to the len (length) argument in the original call to VpLowLevelCmd().

DEVICES All

TERMINATIONS All

DESCRIPTION This event occurs after the VTD has emptied the downstream mailbox, indicating that the application
can call another VP-API-II function that uses the downstream mailbox. Instead of using this event, it
is generally easier for the application to repeatedly call (poll) any VP-API-II function that uses the
downstream mailbox until the VP_STATUS_MAILBOX_BUSY result is not returned. The VP-API-II can
be configured to do this polling automatically. See WAIT_TO_ACQUIRE_VCP_MB or
WAIT_TO_ACQUIRE_VPP_MB in vp_api_cfg.h for details.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES VCP, VPP

TERMINATIONS All

DESCRIPTION This event occurs as a result of calling VpGetOption() and indicates that the VP-API-II has
retrieved the requested option setting from the VTD. See VpGetOption(), on page 109 for
information on that function.

This event is non-maskable.

T.S. OR HANDLE Handle

EVENT DATA Event data is of VpOptionIdType type and indicates which option was read from the VTD, allowing
the application to correctly interpret the associated results data. See Option Summary, on page 33
for the complete list of VP-API-II options.

RESULTS The data type of the result associated with this event depends on exactly which option was read. The
application should determine the option data type by inspecting the event data field, allocate a buffer
of the appropriate type, and call VpGetResults() with a pointer to that buffer. Chapter 4 describes
the result type for each VP-API-II option.

DEVICES All

TERMINATIONS All

60

V P A P I - I I U S E R ’ S G U I D E

5.5.6 VP_LINE_EVID_RD_LOOP
DESCRIPTION The event occurs as a result of calling VpGetLoopCond() and indicates that the loop condition

results are available. See VpGetLoopCond(), on page 108 for information on that function.

This event is non-maskable.

T.S. OR HANDLE Handle

EVENT DATA N/A

RESULTS The results associated with this event are passed through the VpLoopCondResultsType structure
shown below.

typedef struct {
int16 rloop; /* Measured loop resistance */
int16 ilg; /* Sensed longitudinal (common mode) current */
int16 imt; /* Sensed metallic (differential) current */
int16 vsab; /* Sensed voltage on AB (tip/ring) leads */
int16 vbat1; /* Battery 1 measured voltage */
int16 vbat2; /* Battery 2 measured voltage */
int16 vbat3; /* Battery 3 measured voltage */
int16 mspl; /* Measured metering signal peak level */
VpBatteryType selectedBat; /* Battery currently used for DC feed */
VpDcFeedRegionType dcFeedReg; /* DC feed region presently selected */

} VpLoopCondResultsType;

Enumeration Data Type: VpBatteryType:
VP_BATTERY_UNDEFINED /* Not known or feature not supported */
VP_BATTERY_1 /* Battery 1 */
VP_BATTERY_2 /* Battery 2 */
VP_BATTERY_3 /* Battery 3 */

Enumeration Data Type: VpDcFeedRegionType:
VP_DF_UNDEFINED /* Not known or feature not supported */
VP_DF_ANTI_SAT_REG /* DC feed is in anti saturation region */
VP_DF_CNST_CUR_REG /* DC feed is in constant current region */
VP_DF_RES_FEED_REG /* DC feed is in resistive feed region */

The application can convert the integer results in this structure to real-world values using the
conversion equations found in Table 5–2. Note that these equations assume that the application is
using VE790 or VE880 devices with the recommended external components. Refer to the
appropriate Zarlink Semiconductor documentation (Chip Set User’s Guide or Data Sheet) for
recommended application circuits.

These results are based on a single instantaneous reading; no filtering is performed. The ilg value
will fluctuate under the presence of AC induction on the line.

The loop resistance (rloop) result is not valid in the following states: VP_LINE_STANDBY,
VP_LINE_TIP_OPEN, VP_LINE_DISCONNECT, VP_LINE_RINGING, and
VP_LINE_RINGING_POLREV.

The longitudinal (ilg) and metallic (imt) current results are not valid in the following states:
VP_LINE_DISCONNECT, VP_LINE_RINGING, and VP_LINE_RINGING_POLREV.

The metallic voltage (vsab) result is not valid in the following states: VP_LINE_STANDBY,
VP_LINE_TIP_OPEN, and VP_LINE_DISCONNECT.

Table 5–2 Loop Condition Results Conversion

Loop Condition VCP-790 / CSLAC-790 VCP-880

Loop Resistance (rloop / 32768) x 11.67 kΩ (rloop / 32768) x 16 kΩ

Longitudinal Current (ilg / 32768) x 101.32 mA (ilg / 32768) x 42 mA

Metallic Current (imt / 32768) x 101.66 mA (imt / 32768) x 60 mA

Metallic Voltage (vsab / 32768) x 153 V (vsab / 32768) x 240 V

Battery N Voltage (vbatN / 32768) x 99.2 V (vbatN / 32768) x 240 V

Metering Signal Peak
Voltage (mspl / 32768) x 10.2 V (mspl / 32680) x 6.52 V

61

V P A P I - I I U S E R ’ S G U I D E

5.5.7 VP_EVID_CAL_CMP

If the loop conditions measurement is taken during a metering pulse, the mspl field reports the
current metering signal peak voltage. Otherwise, the mspl field equals zero.

VpLoopCondResultsType returns the measured battery voltages using the generic battery names
vbat1, vbat2, and vbat3. Table 5–3 decodes these generic battery names to device-specific
battery names (VBH, VBL, etc.). Note that the interpretation of vBat1 and vBat2 depends on how
the device’s sense pins are connected to the battery supplies. In the Normal configuration the high
battery sense (SHB) is connected to the high battery supply (VBH) and the low battery
sense (SLB) is connected to the low battery supply (VBL). In the Crossed configuration the
high battery sense (SHB) is connected to the low battery supply (VBL) and the low battery
sense (SLB) is connected to the high battery supply (VBH).

The selectedBat and dcFeedReg results are just enumeration types and require no conversion.
Note that the VCP-880 configuration is not capable of returning the currently selected battery or DC
feed region. Therefore, the selectedBat and dcFeedReg results should be ignored if using this
device configuration.

DEVICES CSLAC-790, VCP, VPP

TERMINATIONS FXS

DESCRIPTION This event occurs as a result of calling VpCalCodec() or VpCalLine() and indicates that the
requested device or line is calibrated. Note that disabling (masking) this event blocks this event for
both the VpCalCodec() and VpCalLine() functions. See VpCalCodec(), on page 75 or
VpCalLine(), on page 76 for information on these functions.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES CSLAC-790, VCP-790

TERMINATIONS All

Table 5–3 Battery Name Interpretation

Device Type

Normal Config. Crossed Config.

vBat3vBat1 vBat2 vBat1 vBat2

CSLAC-790 VBL VBH VBH VBL VBP

VPP VBL VBH VBH VBL VBP

VCP-790 VBL VBH VBH VBL VBP

VCP-880 VBL VBH VBH VBL VBM

62

V P A P I - I I U S E R ’ S G U I D E

5.5.8 VP_EVID_CAL_BUSY

5.5.9 VP_LINE_EVID_GAIN_CMP

5.5.10 VP_DEV_EVID_DEV_INIT_CMP

DESCRIPTION This event occurs as a result of calling VpCalCodec() or VpCalLine() and indicates that the
requested device or line can not be calibrated at this time. In the case of a codec calibration, the line
number returned with this event is the lowest-numbered line controlled by the target SLAC device.
Note that disabling (masking) this event blocks this event for both the VpCalCodec() and
VpCalLine() functions. See VpCalCodec(), on page 75 or VpCalLine(), on page 76 for
information on these functions.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES CSLAC-790, VCP-790

TERMINATIONS All

DESCRIPTION This event occurs as a result of calling VpSetRelGain() and indicates that the transmit and/or
receive gain is adjusted. See VpSetRelGain(), on page 88 for information on that function.

This event is non-maskable.

T.S. OR HANDLE Handle

EVENT DATA N/A

RESULTS Gain adjustment results are returned through the VpRelGainResultsType structure defined
below.

typedef struct {
VpGainResultType gResult; /* Success / Failure status return */
uint16 gxValue; /* new GX register value */
uint16 grValue; /* new GR register value /*

VpRelGainResultsType;

The gResult variable indicates whether overflow occurred in the calculation of the transmit or
receive gain. If an error does occur, the corresponding gain is automatically restored to the default
value from the AC Profile. gResult can have any of the following values:

Enumeration Data Type: VpGainResultType:
VP_GAIN_SUCCESS /* Gain setting adjusted successfully */
VP_GAIN_GR_OOR /* Receive gain overflow, reset to default */
VP_GAIN_GX_OOR /* Transmit gain overflow, reset to default */
VP_GAIN_BOTH_OOR /* Tx and Rx gain overflow, reset to default */

The gxValue and grValue variables return the contents of the VTD gain registers.

DEVICES VCP, CSLAC-880, CSLAC-890

TERMINATIONS All

DESCRIPTION This event occurs as a result of calling VpInitDevice() and indicates that VTD initialization is
done. See VpInitDevice(), on page 71 for information on that function.

This event is non-maskable.

T.S. OR HANDLE N/A

EVENT DATA The event data member indicates the number of SLAC devices detected. The least-significant bit
represents the VCP device’s first SLAC chip-select, the next bit represents the second SLAC chip-
select, and so on for up to eight total SLAC devices. These bits are set to 1 if a SLAC device is
detected on the corresponding chip-select.

RESULTS N/A

DEVICES All

TERMINATIONS All

63

V P A P I - I I U S E R ’ S G U I D E

5.5.11 VP_LINE_EVID_LINE_INIT_CMP

5.5.12 VP_DEV_EVID_IO_ACCESS_CMP

DESCRIPTION This event occurs as a result of calling VpInitLine() and indicates that the requested line is
initialized. See VpInitLine(), on page 73 for information on that function.

This event is non-maskable.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS All

DESCRIPTION This event occurs as a result of calling VpDeviceIoAccess() or VpDeviceIoAccessExt() nd
indicates that the requested I/O access is done. See VpDeviceIoAccess(), on page 96 and
VpGetDeviceStatusExt(), on page 114 for information on these functions.

This event is non-maskable.

T.S. OR HANDLE N/A

EVENT DATA The event data variable indicates whether the operation was a read (VP_DEVICE_IO_READ) or write
(VP_DEVICE_IO_WRITE).

RESULTS If this event corresponds to an I/O read operation, the application should call VpGetResults() with
a pointer to an appropriate struct, depending on which function call resulted in the event.

For VpDeviceIoAccess(), a VpDeviceIoAccessDataType struct should be passed.
VpGetResults() copies the I/O read results into the deviceIOData_63_32 and
deviceIOData_31_0 variables of VpDeviceIoAccessDataType. VpDeviceIoAccess(), on
page 96 describes how to map the I/O read results in these variables to physical I/O pin logic states.

For VpDeviceIoAccessExt(), a VpDeviceIoAccessExtType struct should be passed. See
VpGetDeviceStatusExt(), on page 114 for a description of this struct.

DEVICES All

TERMINATIONS All

64

V P A P I - I I U S E R ’ S G U I D E

5.5.13 VP_LINE_EVID_LINE_IO_RD_CMP

5.5.14 VP_LINE_EVID_LINE_IO_WR_CMP

DESCRIPTION This event occurs as a result of calling VpLineIoAccess() with direction = VP_IO_READ and
indicates that the requested operation is complete. See VpLineIoAccess(), on page 100 for
information on this function.

This event is non-maskable.

T.S. OR HANDLE Handle

EVENT DATA N/A

RESULTS The application should call VpGetResults() with a pointer to a VpLineIoAccessType struct to
receive the results associated with this event. See VpLineIoAccess(), on page 100 for a
description of this struct.

DEVICES VCP2

TERMINATIONS All

DESCRIPTION This event occurs as a result of calling VpLineIoAccess() with direction = VP_IO_WRITE and
indicates that the requested operation is complete. See VpLineIoAccess(), on page 100 for
information on this function.

T.S. OR HANDLE Handle

EVENT DATA N/A

RESULTS N/A

DEVICES VCP2

TERMINATIONS All

65

V P A P I - I I U S E R ’ S G U I D E

5.6 TEST EVENTS

The test events occur as a result of the application calling a VP-API-II self-test function. The set of
valid test events is defined in the software by the VpTestEventType enumeration.

5.6.1 VP_DEV_EVID_STEST_CMP

5.6.2 VP_DEV_EVID_CHKSUM

DESCRIPTION This event occurs as a result of calling VpSelfTest() and indicates that the VCP self-test is done.
See VpSelfTest(), on page 97 for information on that function.

T.S. OR HANDLE N/A

EVENT DATA Event data indicates whether the self-test passed or failed and can be any of the values shown below.

Enumeration Data Type: VpSelfTestResultIdType:
VP_STEST_SUCCESS
VP_STEST_FAIL

RESULTS N/A

DEVICES VCP

TERMINATIONS All

DESCRIPTION This event occurs as a result of calling VpCodeCheckSum() and indicates that the checksum
calculation is complete. See VpCodeCheckSum(), on page 114 for information on that function.

This event is non-maskable.

T.S. OR HANDLE Handle

EVENT DATA N/A

RESULTS The checksum results are passed through the same VpChkSumType structure used for the
VP_DEV_EVID_BOOT_CMP event. Refer to VP_DEV_EVID_BOOT_CMP, on page 58 for a
description of the VpChkSumType structure.

DEVICES VCP, VPP

TERMINATIONS All

66

V P A P I - I I U S E R ’ S G U I D E

5.7 PROCESS EVENTS

The process events report the progress of some process initiated by the application. The set of valid
process events is defined in the software by the VpProcessEventType enumeration.

5.7.1 VP_LINE_EVID_MTR_CMP

5.7.2 VP_LINE_EVID_MTR_ABORT

5.7.3 VP_LINE_EVID_MTR_CAD

DESCRIPTION This event occurs as a result of calling VpStartMeter() and indicates that the metering signal was
generated as requested. See VpStartMeter(), on page 94 for information on that function.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs as a result of calling VpStartMeter() and indicates that the metering signal was
aborted before completion. See VpStartMeter(), on page 94 for information on that function.

T.S. OR HANDLE N/A

EVENT DATA Event data returns the number of complete metering pulses transmitted. If a pulse was interrupted it
is not included in this count.

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs as a result of calling VpStartMeter() and indicates that number of metering
pulses that have been sent so far. This event is generated (if unmasked) at the end of every ON
period of the metering signal until the predefined metering sequence is complete. See
VpStartMeter(), on page 94 for information on that function.

T.S. OR HANDLE N/A

EVENT DATA Event data returns the number of complete metering pulses transmitted.

RESULTS N/A

DEVICES VCP-790

TERMINATIONS FXS

67

V P A P I - I I U S E R ’ S G U I D E

5.7.4 VP_LINE_EVID_CID_DATA

5.7.5 VP_LINE_EVID_RING_CAD

5.7.6 VP_LINE_EVID_SIGNAL_CMP

DESCRIPTION This event indicates that the Caller ID data buffer is either half-empty or empty, depending on the
state of the flag attached to the event. This event occurs as a result of calling VpInitCid(),
VpSendCid(), or VpContinueCid(). See VpInitCid(), on page 78, VpSendCid(), on
page 92, or VpContinueCid(), on page 93 for information on these functions.

T.S. OR HANDLE N/A

EVENT DATA The event data variable indicates whether the VTD can take more Caller ID data or Caller ID
transmission is done. This information is passed through the VpCidDataEventDataType structure
shown below.

Enumeration Data Type: VpCidDataEventDataType:
VP_CID_DATA_NEED_MORE_DATA /* Caller ID is expecting more data */
VP_CID_DATA_TX_DONE /* Caller ID transmission is complete */

The VP_CID_DATA_NEED_MORE_DATA event occurs when the Caller ID data buffer has 16 bytes left
to transmit. The application can load up to 16 more bytes of Caller ID data into the buffer when this
event occurs.

The VP_CID_DATA_TX_DONE event occurs after the VTD transmits the last byte of Caller ID data
and completes the Caller ID sequence. This event also occurs if Caller ID transmission is aborted
due to off-hook detection.

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs when the VP-API-II/VTD performs automatic ringing cadencing. It notifies the
application of ringing-on and ringing-off state transitions as the VP-API-II/VTD executes the specified
cadence. This event does not occur for any line that does not have a ringing cadence applied to it.
See VpInitRing(), on page 77 for information on applying a ringing cadence to a line. This event
also does not occur when the ringing cadence is halted because of a state change or ring-trip.

T.S. OR HANDLE N/A

EVENT DATA Event data contains a variable of VpRingCadEventDataType type, which indicates the type of
ringing cadence state change that occurred.

Enumeration Data Type: VpRingCadEventDataType:
VP_RING_CAD_BREAK, /* Begin OFF period of ringing cadence */
VP_RING_CAD_MAKE, /* Begin ON period of ringing cadence */
VP_RING_CAD_DONE, /* End of ringing cadence */

RESULTS N/A

DEVICES All

TERMINATIONS FXS

DESCRIPTION This event occurs as a result of calling VpSendSignal() and indicates that the requested signal
was sent. See VpSendSignal(), on page 89 for information on that function.

T.S. OR HANDLE N/A, except for VP_SENDSIG_MOMENTARY_LOOP_OPEN which indicates ’1’ if a parallel off-hook is
detected, ’0’ otherwise.

EVENT DATA Event data contains a variable of VpSendSignalType type, which indicates the type of signal that
was sent. This enumeration type is described with VpSendSignal(), on page 89.

RESULTS N/A

DEVICES CSLAC, VCP

TERMINATIONS All

68

V P A P I - I I U S E R ’ S G U I D E

5.7.7 VP_LINE_EVID_TONE_CAD
DESCRIPTION This event occurs when the VP-API-II/VTD performs tone cadencing. It notifies the application of

completion of the cadence. Completion of the cadence occurs when a cadence reaches an "always
on", "always off", or end of cadence.

T.S. OR HANDLE N/A

EVENT DATA N/A

RESULTS N/A

DEVICES All

TERMINATIONS All

CHAPTER

69

6 INITIALIZATION
FUNCTIONS

6.1 OVERVIEW

This chapter discusses VP-API-II functions that perform initialization. These functions are summarized below.

• VpBootLoad() – Loads the device code and data image, and starts the device.
• VpInitDevice() – Initializes all FXS and FXO lines of a device and applies the specified

profiles to those lines.
• VpInitLine() – Initializes an individual FXS or FXO line and applies the specified profiles to

that line.
• VpConfigLine() – Sets the AC, DC, and Ring Profiles for an individual FXS line.
• VpSetBatteries() – Sets the battery settings in the device, used to improve dc feed

performance on devices that support this function.
• VpCalCodec() – Issues a calibrate analog circuit command to a SLAC device.
• VpCalLine() – Instructs overhead voltage for a SLIC device to be calibrated for a FXS line.
• VpInitRing() – Sets the ringing parameters such as the ringing cadence and Caller ID

profile for an individual FXS line.
• VpInitCid() – Prepares a FXS line for a Caller ID ring sequence.
• VpInitMeter() – Configures the metering signal generator of an individual FXS line.
• VpInitProfile() – Initializes the device’s profile tables.
• VpSoftReset() – Resets the device without requiring an image re-load.

70

V P A P I - I I U S E R ’ S G U I D E

6.2 FUNCTION DESCRIPTIONS

6.2.1 VpBootLoad()
SYNTAX VpStatusType

VpBootLoad(

 VpDevCtxType *pDevCtx, /* Pointer to device context */

 VpBootStateType state, /* Indicates current boot state */

 VpImagePtrType pImageBuffer, /* Pointer to the binary image buffer */

 uint32 bufferSize, /* Size (in bytes) of image buffer */

 VpScratchMemType *pScratchMem, /* Ptr to temp buf for decompression */

 VpBootModeType validation) /* The boot-load validation mode */

DESCRIPTION This function loads the code and data image and starts the VTD.It automatically resets the VTD
hardware before starting the code load. All other VP-API-II functions assume that the boot-load process
has been completed. Note that a device context must be created before calling this function (see
VpMakeDeviceObject(), on page 23 for more information).

This function sends the buffer pointed to by pImageBuffer to the VTD program and data memory.
The bufferSize argument indicates the size (in bytes) of the buffer.

The bootable VTD image is released in both compressed and uncompressed formats. The compressed
image’s name indicates the number of “window-bits” used during compression (typically 8). If the
compressed image is used, it must be enabled in the file vp_api_cfg.h, which has a number of
compile-time options related to the boot-loading of a compressed VTD image. During runtime, the
parameter pScratchMem indicates that the image is uncompressed if set to VP_NULL. If
pScratchMem is not VP_NULL, it indicates that the image being passed is compressed. The
pScratchMem argument must point to a working buffer of size sizeof(VpScratchMemType). The
exact size is dependant on the options selected and the processor being used, but is typically 8-10K
bytes. After the boot-load process is complete the buffer is no longer needed and can be reused for
normal call processing data storage.

The entire boot-load image does not have to be located in one buffer. This function may be called
multiple times until the entire binary image load is complete. This function returns when the image buffer
is transmitted in its entirety. The first invocation for a boot-load should have state ==
VP_BOOT_STATE_FIRST. Any additional calls required, excluding the last, should have state ==
VP_BOOT_STATE_CONTINUE. This function finalizes the load and start the VTD when called with
state == VP_BOOT_STATE_LAST. This allows a host to have the code image located in a flash file
system which may supply the code image in multiple buffers (or pages or blocks) of memory. Note that
if the uncompressed image is being used and the application is boot-loading in multiple blocks, all the
boot image blocks that are provided to this function must be some multiple of 128 bytes in length.
However there is no such limitation when using compressed image.

If the entire boot-load image is located in one buffer, then the boot process can be completed with one
invocation of this function. In this case, the state argument should be VP_BOOT_STATE_FIRSTLAST.
The VpBootStateType type is defined as follows:

Enumeration Data Type: VpBootStateType:
VP_BOOT_STATE_FIRST /* First block to download */
VP_BOOT_STATE_CONTINUE /* Additional block to download */
VP_BOOT_STATE_LAST /* Last block to download */
VP_BOOT_STATE_FIRSTLAST /* First and only block to download */

The validation parameter specifies what method of code space verification is employed. This
argument is required for all function invocations during the boot-load process. The validation
parameter is of VpBootModeType type, defined as follows:

Enumeration Data Type: VpBootModeType:
VP_BOOT_MODE_NO_VERIFY /* No write verification is performed *
VP_BOOT_MODE_VERIFIY /* Verify Load Image Checksum */

If validation is set to VP_BOOT_MODE_NO_VERIFY, then the boot image is not checked for errors
after it is loaded into the device.

If validation is set to VP_BOOT_MODE_VERIFY, then the boot image is checked for errors after it is
loaded into the device. If an error is detected, the VTD is held in reset and an error code is returned.

71

V P A P I - I I U S E R ’ S G U I D E

6.2.2 VpInitDevice()

After the final call to this function, with state equal to VP_BOOT_STATE_LAST or
VP_BOOT_STATE_FIRSTLAST, the VTD starts running its initialization code. After VTD initialization is
complete, the VpGetEvent() function returns VP_EVID_BOOT_CMP as the first event.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_DEV_EVID_BOOT_CMP, on page 58

DEVICES VCP, VPP

TERMINATIONS All

SYNTAX VpStatusType

VpInitDevice(

 VpDevCtxType *pDevCtx, /* Pointer to device context */

 VpProfilePtrType pDevProfile, /* Pointer to Device Profile */

 VpProfilePtrType pAcProfile, /* Pointer to AC profile */

 VpProfilePtrType pDcProfile, /* Pointer to DC profile */

 VpProfilePtrType
pRingProfile,

/* Pointer to ringing profile */

 VpProfilePtrType
pFxoAcProfile,

/* Pointer to FXO AC profile */

 VpProfilePtrType
pFxoCfgProfile)

/* Pointer to FXO config profile */

DESCRIPTION This function initializes all lines controlled by the VTD associated with the passed device context. This
includes performing the recommended power-up sequence specified in the device’s Chip Set
User’s Guide, including executing VpCalCodec() for each line as necessary. This function should
be called after creating the device and line objects via VpMakeDeviceObject() and
VpMakeLineObject(), respectively. All device and line options are overwritten with their
default values as a result of calling this function. The application should not change device or
line options until the initialization procedure is complete, as indicated by the
VP_DEV_EVID_DEV_INIT_CMP event.

The pDevProfile parameter takes a pointer to a Device Profile and is required for both FXS and
FXO implementations. This function returns an error code if pDevProfile does not point to a valid
profile.

The VTD requires parameters for operation that may include AC characteristics, DC feed options,
and ringing parameters for its FXS terminations. The pAcProfile, pDcProfile, and
pRingProfile arguments of this function provide the required parameters for the configuration of
FXS lines. If a VTD supports FXO terminations, then it requires a different set of parameters for FXO
AC characteristics and FXO configuration. The pFxoAcProfile and pFxoCfgProfile arguments
provide the FXO line configuration parameters for the VTD. Note that if there are no FXO or FXS lines
in the application, the profile pointers arguments corresponding to the unused termination type
should equal VP_PTABLE_NULL.

The profile types accepted by this function are described in Profile Types, on page 15. For each
of these profiles, the application can supply either a pointer to a valid profile or a profile table index.
Remember that valid profiles must be loaded into the profile table before a profile table index can be
used. See Profiles, on page 15.

If VP_PTABLE_NULL is passed for any of the profiles (other than the Device Profile), then the device
uses its default parameters for the associated profile. No overall system performance is
guaranteed when using default parameters. With the exception of the Device Profile, any profiles
not set using this function can still be set by the application at a later time by calling VpInitLine()
or VpConfigLine().

72

V P A P I - I I U S E R ’ S G U I D E

Upon completion of the this function, all initialized FXS lines are placed in the
VP_LINE_DISCONNECT line state, thus disconnecting the lines from the loop. The FXO lines are set
to the VP_LINE_FXO_LOOP_OPEN line state.

The following relay states are used for various line termination types as the relay states at the end of
this function.

FXS Line Termination Type Relay State
VP_TERM_FXS_GENERIC VP_RELAY_NORMAL
VP_TERM_FXS_ISOLATE VP_RELAY_NORMAL
VP_TERM_FXS_TITO_TL_R VP_RELAY_NORMAL
VP_TERM_FXS_75181 VP_RELAY_NORMAL
VP_TERM_FXS_75282 VP_RELAY_RESET
VP_TERM_FXS_RR VP_RELAY_NORMAL
VP_TERM_FXS_TO_TL VP_RELAY_NORMAL

See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_DEV_EVID_DEV_INIT_CMP, on page 62

DEVICES All

TERMINATIONS All

73

V P A P I - I I U S E R ’ S G U I D E

6.2.3 VpInitLine()
SYNTAX VpStatusType

VpInitLine(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpProfilePtrType pAcProfile, /* Pointer to AC profile */

 VpProfilePtrType
 pDcFeedOrFxoCfgProfile,

/* Ptr to DC feed or FXO cfg profile */

 VpProfilePtrType
 pRingProfile)

/* Pointer to ringing profile */

DESCRIPTION This function resets all attributes of the line associated with pLineCtx. The application can use this
function to reset a line without affecting the other lines.

This function places the line in a known state. The FXS lines are placed in the VP_LINE_DISCONNECT
state and the FXO lines are placed in the VP_LINE_FXO_LOOP_OPEN state. The relay states at the
end of this function are same as those described in the function VpInitDevice(), on page 71.

This function uses profiles in the same manner as VpInitDevice(), on page 71. See Chapter 2, on
page 15 for a complete description of the profiles.

All profile settings for the target line are lost when the line is reset. Therefore, this function should be
called with appropriate pointers to profiles or profile indices. Alternatively, the VpConfigLine()
function could be called later to set the profiles for this line.

If the target line is an FXS termination, then this function assumes that the
pDcFeedOrFxoCfgProfile argument points to a DC profile. Otherwise, this function assumes that
the pDcFeedOrFxoCfgProfile argument points to a FXO configuration profile, and the
pRingProfile argument is ignored.

Notes:

1. The following options are eventually reset to default values as a result of calling this function:
VP_OPTION_ID_ZERO_CROSS, VP_OPTION_ID_PULSE_MODE, VP_OPTION_ID_CODEC,
VP_OPTION_ID_PCM_HWY, VP_OPTION_ID_LOOPBACK, VP_OPTION_ID_LINE_STATE,
VP_OPTION_ID_RING_CNTRL, VP_OPTION_ID_DTMF_MODE and
VP_OPTION_ID_PCM_TXRX_CNTRL.

2. If the line is currently performing Caller ID transmission, metering, or ringing, all such processes are
stopped. No events are reported as a consequence of aborting these processes.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_LINE_INIT_CMP, on page 63

DEVICES All

TERMINATIONS All

74

V P A P I - I I U S E R ’ S G U I D E

6.2.4 VpConfigLine()
SYNTAX VpStatusType

VpConfigLine(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpProfilePtrType pAcProfile, /* Pointer to AC profile */

 VpProfilePtrType
 pDcFeedOrFxoCfgProfile,

/* Ptr to DC feed or FXO cfg profile */

 VpProfilePtrType
 pRingProfile)

/* Pointer to ringing profile */

DESCRIPTION This function re-initializes the specified line’s AC, DC, and ring parameters with the profiles provided
by the function’s arguments. Unlike VpInitLine() or VpInitDevice(), this function does not
reset the line or the device; it merely loads the given profiles. This function is useful for applying unique
profiles to a particular line.

This function uses profiles in the same manner as VpInitDevice(), on page 71. See Chapter 2, on
page 15 for a complete description of the profiles.

If the target line is an FXS termination, then this function assumes that the
pDcFeedOrFxoCfgProfile argument points to a DC profile. Otherwise, this function assumes that
the pDcFeedOrFxoCfgProfile argument points to a FXO configuration profile, and the
pRingProfile argument is ignored. Any profile pointer argument equal to VP_PTABLE_NULL is
ignored and the line’s configuration is unchanged.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

75

V P A P I - I I U S E R ’ S G U I D E

6.2.5 VpCalCodec()
SYNTAX VpStatusType

VpCalCodec(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpDeviceCalType mode) /* Sets the calibration mode */

DESCRIPTION This function calibrates analog circuits in the SLAC device that controls the specified line. The
calibration procedure affects the entire SLAC device, so all lines driven by that SLAC device must be
removed from service during the calibration procedure.

This procedure involves calibrating analog blocks, such as A/D converter offset voltages, and can take
approximately 10 ms. The policy followed when performing a calibration is given by the mode
argument, which can be one of the following enumerated values:

Enumeration Data Type: VpDeviceCalType:
VP_DEV_CAL_NOW /* Calibrate immediately */
VP_DEV_CAL_NBUSY /* Calibrate if all lines are “on-hook” */

If VP_DEV_CAL_NOW is specified, then the device is halted immediately, all lines forced to Standby and
calibration started, regardless of the state of each line.

If VP_DEV_CAL_NBUSY is specified, then the device will be halted for calibration only if all channels of
the device are inactive. If one or more of the lines on the specified device are in use (in a state other
than VP_LINE_DISCONNECT or VP_LINE_STANDBY), then the event VP_EVID_CAL_BUSY is
returned and no calibration is performed.

When calibration is done, each line of the calibrated SLAC is left in the VP_LINE_STANDBY state, and
the VP_EVID_CAL_CMP event occurs. The line number returned with the VP_EVID_CAL_CMP event
is the first (lowest) line number controlled by the calibrated SLAC device.

The lines serviced by the device being calibrated will be placed in the Standby state during calibration.
If the lines were originally in the Disconnect state, they will not be transitioned to the Standby state
using the ramp to Standby time specified by the VP_DEVICE_OPTION_ID_RAMP2STBY option;
instead, the lines will be moved immediately into the Standby state. If a slow transition to Standby is
desired, then each of the lines should be put into the Standby state before calling VpCalCodec().

Notes:

1. Calibration is automatically performed for a given device during the VpInitDevice() function. If
VpCalCodec() is called directly, the host should re-run its system level calibration routine to
recalculate the offsets that may be affected by the device’s re-calibration. The host controller
should also re-run the VpCalLine() function after executing the VpCalCodec() function.

2. The SLAC device cannot handle MPI activity while performing its internal calibration routine.
Therefore, no command affecting the target SLAC device can be issued during calibration.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED

VP_EVID_CAL_CMP, on page 61
VP_EVID_CAL_BUSY, on page 62

DEVICES CSLAC-790, VCP-790

TERMINATIONS FXS

76

V P A P I - I I U S E R ’ S G U I D E

6.2.6 VpCalLine()
SYNTAX VpStatusType

VpCalLine(

 VpLineCtxType *pLineCtx) /* Pointer to line context */

DESCRIPTION This function calibrates the SLIC device associated with the given pLineCtx. It applies a correction
to the headroom included in the DC Feed Profile to account for the battery sense and forward gain
tolerances specific to the SLIC device and VTD combination.

If a new DC Feed Profile is loaded for a line using VpConfigLine() anytime following the
execution of the VpCalLine() function, the new DC Feed Profile is automatically adjusted so that
VpCalLine() does not need to be called again unless a VpCalCodec() or VpInitDevice() is
executed.

This procedure achieves optimal results if the SLIC is disconnected from the loop during calibration.
For the VP_TERM_FXS_75282 termination type, the VCP disconnects the SLIC from the loop by
setting the relay state to Disconnect (VP_RELAY_DISCONNECT). For the VP_TERM_FXS_TO_TL
termination type, the VCP disconnects the SLIC from the loop by setting the relay state to Test Out
(VP_RELAY_TESTOUT). The VCP can not disconnect the SLIC from the loop in the
VP_TERM_FXS_GENERIC configuration, so calibration is performed with the SLIC connected to the
loop.

The VP_EVID_CAL_BUSY event occurs if another line is currently calibrating. Otherwise, the
VP_EVID_CAL_CMP event is returned when SLIC calibration is done.

Notes:

1. SLIC calibration is not automatically performed during device initialization via
VpInitDevice().

2. VpCalCodec() changes the gain and offset corrections used by the codec and may affect the
results of the VpCalLine() procedure. Therefore VpCalLine() should be executed after
VpCalCodec() is executed.

3. Some low-level noise may be generated on other lines serviced by the same SLAC device when
VpCalLine() is executed on a given line. Therefore, it is recommended that the application
execute VpCalLine() only if all lines serviced by the relevant SLAC device are currently in the
standby, tip-open, or disconnect state.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED

VP_EVID_CAL_CMP, on page 61
VP_EVID_CAL_BUSY, on page 62

DEVICES VCP-790

TERMINATIONS FXS

77

V P A P I - I I U S E R ’ S G U I D E

6.2.7 VpInitRing()
SYNTAX VpStatusType

VpInitRing(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpProfilePtrType
 pCadProfile,

/* Pointer to ringing cadence profile */

 VpProfilePtrType
 pCidProfile)

/* Pointer to Caller ID profile */

DESCRIPTION VpInitRing() initializes Ringing state parameters for the line associated with pLineCtx. These
parameters determine the ringing cadence and Caller ID Profile to be used while the line is in the
VP_LINE_RINGING state.

The Caller ID behavior and the Cadence employed during the Ringing state are defined by profiles.
Like other profiles, the ringing profiles used by this function may be pre-loaded in the profile tables or
can be directly loaded from application memory. Refer to Profile Tables, on page 16 for more
information.

The pCadProfile argument selects the profile to be used for the ringing cadence. If pCadProfile
is VP_PTABLE_NULL, then the default “always on” ringing cadence is used.

The pCidProfile argument determines which Caller ID Profile is used during the ringing cadence.
This function should be called with a Caller ID Profile when implementing Type-I Caller ID. If
pCidProfile is a valid profile table index or profile pointer (not VP_PTABLE_NULL) and the ringing
cadence includes Caller ID transmission, then Caller ID data is transmitted during subsequent ringing
cadences on this line. Caller ID events (VP_LINE_EVID_CID_DATA) also occur during these ringing
cadences. If pCidProfile equals VP_PTABLE_NULL, then Caller ID data is not automatically
transmitted during subsequent ringing cadences on this line. The application can still manually
transmit Caller ID using the VpSendCid() function. See VpSendCid(), on page 92 for details.

If automatic Type-I Caller ID is enabled for a line, the application should call VpInitCid() to copy
Caller ID data into the Caller ID transmit buffer before putting the line into the Ringing state. See
VpInitCid(), on page 78 for more information.

Each line controlled by the VP-API-II defaults to internal ringing with an “always on” cadence and no
Caller ID, if otherwise not initialized. If the defaults are not acceptable, then this function should be
called at least once for each line before putting the lines into Ringing mode. It is only necessary to
initialize each line once, usually after a system reset, unless different ringing parameters are needed
per call, such as a unique ringing cadence.

This function does not start ringing on the line. The application must call VpSetLineState() with
VP_LINE_RINGING as the state argument in order to actually start ringing the line. The line will
continue ringing, with the cadence defined by pCadProfile, until VpSetLineState() is called
with a non-ringing state argument or an off-hook is detected.

Notes:

1. Type-I Caller ID has the CLI (Caller Line Identity) frame transmitted as part of the caller alert
sequence (ringing signal plus any other signals, such as Caller ID). This type of CLI is only
transmitted while the line is on-hook. Different countries have different methods for performing
Type-I Caller ID.

2. Type-II Caller ID is transmitted with the line off-hook, and provides caller line identity to lines with
call waiting calls. Usually Type-II Caller ID requires a type of handshake with the CPE before FSK
transmission begins.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS FXS

78

V P A P I - I I U S E R ’ S G U I D E

6.2.8 VpInitCid()
SYNTAX VpStatusType

VpInitCid(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 uint8 length, /* Length of Caller ID data */

 uint8p pCidData) /* Pointer to the Caller ID data */

DESCRIPTION This function should be called before placing a line into the Ringing state if the associated line was set-
up for Caller ID by VpInitRing(). If VpInitCid() is not called before the line is placed into Ringing,
then the VTD will transmit a Caller ID message containing undefined data. Note that this function is
necessary when implementing Caller ID Type-I.

The length argument should specify the total length in bytes of the entire message to be transmitted
if the message length is less than or equal to 32 bytes, otherwise it should be set to 32. Since Caller ID
messages can be longer than 32 bytes, the application may need to make several VP-API-II function
calls to transmit a complete Caller ID message. To facilitate this, the VP-API-II generates the
VP_LINE_EVID_CID_DATA event (with eventData equal to VP_CID_DATA_NEED_MORE_DATA)
when 16 bytes of Caller ID data remain in the transmit buffer. It takes approximately 133 ms to send 16
bytes of CID data. Upon receiving this event, the application must call VpContinueCid() to buffer
any remaining Caller ID data. If this function is called with length less than or equal to 16 bytes, then
the VP-API-II assumes that the Caller ID message is not longer than 16 bytes and therefore does not
generate the VP_CID_DATA_NEED_MORE_DATA event.

The pCidData argument should point to a buffer containing the initial bytes to be sent as the Caller ID
message. Neither the VP-API-II nor the VTD automatically generate the message type or message
length. These should be included, if desired, in the buffer pointed to by pCidData.

When the VTD is done transmitting Caller ID it generates the VP_LINE_EVID_CID_DATA event with
eventData member set to VP_CID_DATA_TX_DONE.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_CID_DATA, on page 67

DEVICES All

TERMINATIONS FXS

79

V P A P I - I I U S E R ’ S G U I D E

6.2.9 VpInitMeter()
SYNTAX VpStatusType

VpInitMeter(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpProfilePtrType pMeterProfile) /* Ptr to metering profile */

DESCRIPTION This function initializes the metering parameters for the specified line, using the values contained in
the Metering Profile. It should be called prior to initiating one or more metering pulses using
VpStartMeter().

Like other profiles, the metering profiles used by this function may be pre-loaded in the profile tables
or can be directly loaded from application memory. Refer to Profile Tables, on page 16 for more
information.

If pMeterProfile is VP_PTABLE_NULL, nothing happens and this function simply returns
VP_STATUS_SUCCESS.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS FXS

80

V P A P I - I I U S E R ’ S G U I D E

6.2.10 VpInitProfile()
SYNTAX VpStatusType

VpInitProfile(

 VpDevCtxType *pDevCtx, /* Pointer to device context */

 VpProfileType type, /* Type of profile to load */

 VpProfilePtrType pProfileIndex, /* Profile index selector */

 VpProfilePtrType pProfile) /* Pointer to the profile data */

DESCRIPTION This function initializes an entry in the VTD profile table. This function copies the profile pointed to by
pProfile into the VTD hardware profile table. Once initialized by this function, this entry in the profile
table may be accessed in subsequent VP-API-II function calls by specifying its index number. See
Profile Tables, on page 16 for more information.

The default entries in the profile table may not contain valid profiles. Hence the application should
initialize the profile table with valid profiles if it intends to reference them later.

The profile type is given by the following enumeration:

Enumeration Data Type: VpProfileType:
VP_PROFILE_DEVICE /* Device profile */
VP_PROFILE_AC /* AC Profile */
VP_PROFILE_DC /* DC Profile */
VP_PROFILE_RING /* Ringing Profile */
VP_PROFILE_RINGCAD /* Ringing Cadence Profile */
VP_PROFILE_TONE /* Tone Profile */
VP_PROFILE_METER /* Metering Profile */
VP_PROFILE_CID /* Caller ID Profile */
VP_PROFILE_TONECAD /* Tone Cadence Profile */
VP_PROFILE_FXO_CONFIG /* FXO Configuration Profile */

The pProfileIndex parameter determines which profile in the table is updated. The argument
should be of the form VP_PTABLE_INDEXx, where x is the index into the profile table. This value x
must not be larger than number of entries in the profile table for the given profile type. Refer to Table
2–2 for the maximum value for pProfileIndex for each profile type. If pProfileIndex is
VP_PTABLE_NULL, this function returns VP_STATUS_INVALID_ARG.

If pProfile is VP_PTABLE_NULL, this function marks the profile table entry as uninitialized.
Subsequent VP-API-II function calls attempting to use this profile table entry return the
VP_STATUS_ERR_PROFILE error code.

Notes:

1. The application can call this function to modify a profile that is currently being used by one or more
lines, but using this function in this manner is not recommended. In this case the application should
immediately call functions such as VpInitDevice(), VpInitLine(), VpConfigLine(), or
VpInitRing() to apply the updated profile to the relevant lines.

2. All VP-API-II functions that take profile pointers return VP_STATUS_ERR_PROFILE if called with a
profile table index pointing to an uninitialized profile table entry. The application must call this
function to initialize a profile table entry before attempting to use that profile table entry.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

81

V P A P I - I I U S E R ’ S G U I D E

6.2.11 VpSoftReset()
SYNTAX VpStatusType

VpSoftReset(

 VpDevCtxType *pDevCtx) /* Pointer to device context */

DESCRIPTION The VpSoftReset() function resets the VTD without requiring another image load. When the reset
sequence is complete, a VP_DEV_EVID_BOOT_CMP event occurs.

Following a soft reset, VpInitDevice() and VpMakeLineObject() must be called to restore
the VTD to a known state. Note that all profile tables and options are reset to default values.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_DEV_EVID_BOOT_CMP, on page 58

DEVICES VCP, VPP

TERMINATIONS All

82

V P A P I - I I U S E R ’ S G U I D E

6.2.12 VpSetBatteries()
SYNTAX VpStatusType

VpSetBatteries(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpBatteryModeType battMode,
/* Indicates to enable or disable use of
programmed battery voltages */

 VpBatteryValuesType *pBatt)
/* Pointer to structure specifying battery
voltages */

DESCRIPTION This function enables or disables the use of the programmed battery voltages used by the device for
dc feed purposes. This affects all lines on the device. It has potential improvment if the application
battery voltages are stable to within a lesser percentage from what the device itself can measure.

The battMode parameter determines whether the programmed values should be used of the device
internal battery sense used for dc feed computations. The range of battMode is:

Enumeration Data Type: VpBatteryModeType:
VP_BATT_MODE_DIS /* Use device measured batteries */
VP_BATT_MODE_EN /* Use programmed batteries */

When battMode is VP_BATT_MODE_EN, the structure passed in pBatt must be filled out as follows:

typedef struct VpBatteryValuesType {
 uint16 batt1;
 uint16 batt2;
 uint16 batt3;
};

Where batt1, batt2, and batt3 correspond to the battery configuration found in Table 5–3.
Values for batt1, batt2, and batt3 are in 1.15 format ranging from +/-99.2V (3.027mV/step).

If battMode is VP_BATT_MODE_EN and pBatt is VP_NULL this function returns
VP_STATUS_INVALID_ARG

When battMode is VP_BATT_MODE_DIS, the structure passed is ignored and may be VP_NULL.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES VCP

TERMINATIONS All

CHAPTER

83

7 CONTROL FUNCTIONS

7.1 OVERVIEW

This chapter covers VP-API-II functions that primarily control the VTD. The following control functions are
described in this chapter:

• VpSetLineState() – Sets a line to the requested state.
• VpSetLineTone() – Generates a cadenced call progress tone on a FXS line.
• VpSetRelayState() – Sets the line relay configuration.
• VpSetRelGain() – Sets the relative transmit or receive gain for a line.
• VpSendSignal() – Generates message waiting pulse on FXS lines, or pulse and DTMF

digits on FXO lines.
• VpSendCid() – Starts a Caller ID sequence on a FXS line without waiting for a ring state

change.
• VpContinueCid() – Refreshes the Caller ID buffer for a FXS line during message

transmission.
• VpStartMeter() – Starts metering on a FXS line.
• VpSetOption() – Sets various device and line specific options.
• VpDeviceIoAccess() – Controls device input/output pins.
• VpSelfTest() – Performs the self-test procedure on a line.
• VpLowLevelCmd() – Allows the application to issue low level commands directly to the VTD.

This function is an internal debugging tool that should not be used by the application.
• VpSetBFilter() – Enables with the coefficients provided or disables the B-Filter.
• VpLineIoAccess() – Controls input/output pins for a specific line.
• VpDeviceIoAccessExt() – Controls device input/output pins. An extended replacement

for VpDeviceIoAccess().

84

V P A P I - I I U S E R ’ S G U I D E

7.2 FUNCTION DESCRIPTIONS

7.2.1 VpSetLineState()
SYNTAX VpStatusType

VpSetLineState(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpLineStateType state) /* Selects the desired line state */

DESCRIPTION This function sets the line associated with pLineCtx to the requested line state. The line state is
typically set by the application in response to events that have occurred on the line (on-hook, off-hook)
and commands from the back-end call control system (incoming call). All valid line states are listed
below.

Enumeration Data Type: VpLineStateType:
/* The following states are supported for FXS termination only */
VP_LINE_STANDBY /* On-hook, low power with normal polarity */
VP_LINE_STANDBY_POLREV /* On-hook, low power mode with reverse polarity */
VP_LINE_TIP_OPEN /* Ground-start idle signaling state */
VP_LINE_ACTIVE /* Normal off-hook Active State; Voice Disabled */
VP_LINE_ACTIVE_POLREV /* Normal Active with reverse polarity; Voice Disabled */
VP_LINE_TALK /* Normal off-hook Active State; Voice Enabled */
VP_LINE_TALK_POLREV /* Normal Active with reverse polarity; Voice Enabled */
VP_LINE_OHT /* On-hook transmission state */
VP_LINE_OHT_POLREV /* On-hook transmission state with reverse polarity */
VP_LINE_DISCONNECT /* Line out of service State*/
VP_LINE_RINGING /* Place Ringing on the Line */
VP_LINE_RINGING_POLREV /* Place Ringing on the Line with reverse polarity */

/* The following states are supported for FXO termination only */
VP_LINE_FXO_OHT /* FXO Line providing Loop Open with voice feed */
VP_LINE_FXO_LOOP_OPEN /* FXO Line providing Loop Open without voice feed */
VP_LINE_FXO_LOOP_CLOSE /* FXO Line providing Loop Close without voice feed */
VP_LINE_FXO_TALK /* FXO Line providing Loop Close with voice feed */
VP_LINE_FXO_RING_GND /* FXO Line providing Ring Ground (ground-start only) */

In the VP_LINE_RINGING state, the VP-API-II may perform ringing cadencing and/or Caller ID
transmission, according to the profiles specified in the last call to VpInitRing(). Ringer may be
applied to and removed from the line synchronized with the zero-crossing of the ringing signal. The
operation of the ringing entry and exit can be modified using the VpSetOption() function. If a relay
is supported by the termination type, it must be set to VP_RELAY_NORMAL to allow the VTD to control
the ringing relay when using external ringing. See VP_OPTION_ID_RING_CNTRL, on page 42
and VP_OPTION_ID_ZERO_CROSS, on page 37 for more details.

The states VP_LINE_ACTIVE and VP_LINE_ACTIVE_POLREV place the line in normal off-hook
state. However, voice data exchange through the PCM interface is disabled in this state.

The states VP_LINE_TALK and VP_LINE_TALK_POLREV place the line in normal off-hook state with
voice data exchange enabled.

The on-hook transmission states (VP_LINE_OHT and VP_LINE_OHT_POLREV) enable the VTD
voice path so that Caller ID data can be transmitted by the VTD through its PCM or packet interface.

When the line state is changed from VP_LINE_DISCONNECT to VP_LINE_STANDBY, the line voltage
may be gradually changed over time so as to avoid "pinging" the phone. This feature is controlled by
the VP_DEVICE_OPTION_ID_RAMP2STBY, on page 38 option.

If the line is configured as a FXO termination, only the following states are valid: VP_LINE_FXO_OHT,
VP_LINE_FXO_LOOP_OPEN, VP_LINE_FXO_LOOP_CLOSE, VP_LINE_FXO_TALK and
VP_LINE_FXO_RING_GND.

The VP_LINE_FXO_LOOP_OPEN and VP_LINE_FXO_LOOP_CLOSE states put the line in loop open
(on-hook) and loop closed (off-hook) state respectively. Voice data exchange through the PCM
interface is disabled in VP_LINE_FXO_LOOP_CLOSE state. The VP_LINE_FXO_TALK state is similar
to the VP_LINE_FXO_LOOP_CLOSE state except that the voice path is enabled in the
VP_LINE_FXO_TALK state.

The VP_LINE_FXO_OHT state puts the line in the loop open state with the ability to receive on-hook
signals such as Caller ID

85

V P A P I - I I U S E R ’ S G U I D E

The VP_LINE_FXO_RING_GND state is used to apply a ground to the Ring lead as used in ground-
start signaling. This line state is not currently supported by a Zarlink Semiconductor FXO Termination
type.

Notes:

1. VpInitDevice() places all FXS lines in the VP_LINE_DISCONNECT state, which effectively
disconnects the lines from the loop. The application must call this function after initialization to
enable service to the customer.

2. The VP_LINE_STANDBY_POLREV line state is supported for the CSLAC-880 and CSLAC-890
devices only.

3. A new line state request by the application is assumed to be a higher priority than any other
currently set state or conflicting cadence. Therefore, setting a line state will immediately stop a
currently running Caller ID cadence, Ringing Cadence, or other line state control from
VpSendSignal(). Setting a line to a state does not affect Tone Cadencing (except possibly the
analog performance by changing the line state). If metering is being generated, the current meter
pulse will continue until complete, then will terminate without generating the remaining meter
pulses (if any). If the pulse is defined as "always on", it will terminate immediately.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None.

DEVICES All

TERMINATIONS All

86

V P A P I - I I U S E R ’ S G U I D E

7.2.2 VpSetLineTone()
SYNTAX VpStatusType

VpSetLineTone(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpProfilePtrType
 pToneProfile,

/* Pointer to Tone Profile */

 VpProfilePtrType
 pCadProfile,

/* Pointer to Tone Cadence Profile */

 VpDtmfToneGenType
 *pDtmfControl)

/* Pointer to DTMF control structure */

DESCRIPTION This function starts a call progress tone with an optional cadence on the line associated with
pLineCtx. This function can also generate DTMF tones.

The generated tone is defined by the Tone Profile at pToneProfile. If pToneProfile is
VP_PTABLE_NULL, then any currently active tone is stopped.

The cadence (on/off sequence) applied to the tone is defined by the Cadence Profile at
pCadProfile. If pCadProfile is VP_PTABLE_NULL, then the specified tone is played
continuously until turned-off with a subsequent call to VpSetLineTone().

The argument pDtmfControl controls DTMF tone generation. If this argument is VP_NULL, no
action is performed for DTMF tone generation. DTMF tone generation occurs only if no Tone Profile
is specified (pToneProfile is VP_PTABLE_NULL) and pDtmfControl argument is not VP_NULL.
The DTMF control structure is defined below.

Enumeration Data Type: VpDigitType:
1 to 9 /* Digits 1 to 9; No constants defined for this */
VP_DIG_ZERO /* Digit 0 */
VP_DIG_ASTER /* "*" key on the telephone keypad */
VP_DIG_POUND /* "#" key on the telephone keypad */
VP_DIG_A /* "A" key on the telephone keypad */
VP_DIG_B /* "B" key on the telephone keypad */
VP_DIG_C /* "C" key on the telephone keypad */
VP_DIG_D /* "D" key on the telephone keypad */
VP_DIG_NONE /* Stop digit generation */

Enumeration Data Type: VpDirectionType:
VP_DIRECTION_DS /* Tone generation in downstream direction */
VP_DIRECTION_US /* Tone generation in upstream direction */

typedef struct {
VpDigitType toneId, /* The requested DTMF tone */
VpDirectionType dir, /* DTMF tone generation direction */

} VpDtmfToneGenType;

Notes:

1. Call progress tone and DTMF tone generation cannot be performed simultaneously.
2. Only VPP devices support DTMF tone generation in both the upstream and downstream

directions. CSLAC and VCP devices support DTMF tone generation only in the downstream
direction.

3. The combination of any valid tone profile (except for VP_PTABLE_NULL) with a special cadence
profile is used to generate a UK or Australian Howler tone.

4. VCP-VP790 does not support DTMF Tone generation using pDtmfControl.
5. The event is generated for CSLAC and VCP devices only.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_TONE_CAD, on page 68

DEVICES All

TERMINATIONS All

87

V P A P I - I I U S E R ’ S G U I D E

7.2.3 VpSetRelayState()
SYNTAX VpStatusType

VpSetRelayState(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpRelayControlType rState) /* Relay state */

DESCRIPTION This function configures the VTD-controlled relays. Depending on the line termination type, the
VTD may control some combination of LCAS, electro-mechanical relay, and test load. The line
circuit configuration determines the allowable parameters for rState. This function returns an
error if the rState argument tries to control a relay that is not included in the reference design
circuit (as specified in the call to VpMakeLineObject(), on page 24 through the line termination
type). The relay states are listed below.

Enumeration Data Type: VpRelayControlType:
VP_RELAY_NORMAL
VP_RELAY_RESET
VP_RELAY_TESTOUT
VP_RELAY_TALK
VP_RELAY_RINGING
VP_RELAY_TEST
VP_RELAY_BRIDGED_TEST
VP_RELAY_SPLIT_TEST
VP_RELAY_DISCONNECT
VP_RELAY_RINGING_NOLOAD
VP_RELAY_RINGING_TEST

The VP_RELAY_NORMAL state allows for normal VTD control of the LCAS or relay(s), according to
the current line state selected by the VpSetLineState() function and any fault condition
detected. Selection of any other relay state overrides the automatic VTD relay control. The LCAS,
EMR, and test load are forced into the desired state without consideration for the current SLIC/
SLAC state.

The appendix Relay Configurations, on page 139 describes simple connection diagrams for
applicable relay states for various line termination types.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES CSLAC, VCP-790, VPP

TERMINATIONS All

88

V P A P I - I I U S E R ’ S G U I D E

7.2.4 VpSetRelGain()
SYNTAX VpStatusType

VpSetRelGain(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 uint16 txLevel, /* Relative adjustment to Tx level */

 uint16 rxLevel, /* Relative adjustment to Rx level */

 uint16 handle) /* Handle returned with event */

DESCRIPTION This function adjusts the transmit and receive gain for the specified line. The gain adjustment is
made relative to the gain levels set in the AC Profile applied to the line. Setting the txLevel or
rxLevel to 1.0 resets the respective path to the default gain from the AC Profile.

The transmit and receive gains are specified as 2.14 fixed-point unsigned numbers with a range
of 0 to 4.0 (actually 3.9999) of absolute gain adjustment. The amount of adjustment possible
depends on the zero transmission level point (0 TLP) set in the AC Profile. The application can be
coded to know that the 0 TLP allows for a guaranteed adjustment range, or it can get the default
gain level by setting the txLevel and rxLevel inputs to 1.0 and compute the available
adjustment range using the data returned with the VP_LINE_EVID_GAIN_CMP event.

The VP_LINE_EVID_GAIN_CMP event occurs once the VTD has applied the new gain settings.
The results of this function are described in Section 5.5.9 with the definition of this event.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_GAIN_CMP, on page 62

DEVICES VCP, CSLAC-880, CSLAC-890

TERMINATIONS All

89

V P A P I - I I U S E R ’ S G U I D E

7.2.5 VpSendSignal()
SYNTAX VpStatusType

VpSendSignal(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpSendSignalType signalType, /* Specifies the type of signal */

 void *pSignalData) /* Specifies signal parameters */

90

V P A P I - I I U S E R ’ S G U I D E

DESCRIPTION This function generates a signal on the specified line. The following types of signals are defined:

Enumeration Data Type: VpSendSignalType:
VP_SENDSIG_MSG_WAIT_PULSE /* Send message waiting signal (FXS only)*/
VP_SENDSIG_DTMF_DIGIT /* Generate DTMF digit (FXO only) */
VP_SENDSIG_PULSE_DIGIT /* Generate pulse digit (FXO only) */
VP_SENDSIG_HOOK_FLASH /* Generate hook flash (FXO only) */
VP_SENDSIG_FWD_DISCONNECT /* Generate a Forward Disconnect (FXS only) */
VP_SENDSIG_POLREV_PULSE /* Generate a Polarity Reversal (FXS only) */
VP_SENDSIG_MOMENTARY_LOOP_OPEN/* Execute Momentary Extension Check on FXO */
VP_SENDSIG_TIP_OPEN_PULSE /* Generate a Tip Open Pulse (FXS only) */

For each of the above signal types, the pSignalData argument points to an initialized instance
of a structure or a variable that defines the signal.

When sending a message waiting signal (VP_SENDSIG_MSG_WAIT_PULSE), pSignalData must
point to a VpSendMsgWaitType instance. The VpSendMsgWaitType structure is defined as
follows:

typedef struct {
int8 voltage, /* Voltage (Volts) applied to the line. A

 * negative value means Tip is more negative than
 * Ring, a positive value means Ring is more
 * negative than Tip. */

uint16 onTime, /* Duration of pulse on-time in mS. If the
 * on-time is 0 it stops an ongoing message
 * waiting signal generation. */

uint16 offTime, /* Duration of pulse off-time in mS. If the
 * off-time is set to 0, the voltage is applied
 * to the line continuously. */

uint8 cycles, /* Number of pulses to send on the line. If set
 * to 0, will repeat forever. */

} VpSendMsgWaitType;

When sending a DTMF or pulse digit (VP_SENDSIG_DTMF_DIGIT or
VP_SENDSIG_PULSE_DIGIT), pSignalData must point to a VpDigitType instance. See
VpSetLineTone(), on page 86 for the definition of VpDigitType.

The paramater pSignalData is ignored in case of VP_SENDSIG_HOOK_FLASH.

When sending a Forward Disconnect, pSignalData must point to a uint16 instance specifying
the time in the disconnect state in milli-seconds. No hook events will occur when entering
disconnect, while in disconnect, and for 100ms after recovery from the disconnect state.

When sending a Polarity Reversal, pSignalData must point to a uint16 instance specifying the
time in the polarity reversal state in milli-seconds. No hook events will occur for 100ms after
changing the polarity state. The specific state used for Polarity Reversal is the reverse polarity of
the current state (i.e., if currently in VP_LINE_TALK_POLREV, then Polarity Reversal will be
VP_LINE_TALK).

When sending a Tip Open Pulse, pSignalData must point to a uint16 instance specifying the
time in the tip open state in milli-seconds. Ground key and/or hook events may occur while
performing Tip Open Pulse Send Signal and after the 100ms recovery time.

The paramater pSignalData is ignored in case of VP_SENDSIG_MOMENTARY_LOOP_OPEN. The
FXO applies a loop open for >=10ms and detects a T/R voltage of <=16V. If the voltage is <=16V,
a parallel off-hook is reported in the event VP_LINE_EVID_SIGNAL_CMP by setting the value of
parmHandle to ’1’, otherwise parmHandle is set to ’0’.

If the pSignalData argument is VP_NULL then a Message Waiting Pulse, DTMF Digit, Pulse
Digit, or Hook Flash type signalType is immediately stopped.

The VP_LINE_EVID_SIGNAL_CMP event occurs when signal generation is done.

Notes:

The VP_SENDSIG_POLREV_PULSE, and VP_SENDSIG_MOMENTARY_LOOP_OPEN signal types are sup-
ported for the CSLAC-880 and CSLAC-890 devices only.

The VP_SENDSIG_FWD_DISC signal types are supported for the VCP2, CSLAC-880, and CSLAC-
890 devices only.

The VP_SENDSIG_TIP_OPEN signal type is supported for the CSLAC-880 devices only.

RETURNS See VP-API-II Function Return Type, on page 11

91

V P A P I - I I U S E R ’ S G U I D E

EVENTS
GENERATED VP_LINE_EVID_SIGNAL_CMP, on page 67

DEVICES CSLAC-880, CSLAC-890, VCP-880

TERMINATIONS All

92

V P A P I - I I U S E R ’ S G U I D E

7.2.6 VpSendCid()
SYNTAX VpStatusType

VpSendCid(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 uint8 length, /* Length of the CID data to send */

 VpProfilePtrType
 pCidProfile,

/* Pointer to Caller ID Profile */

 uint8p pCidData) /* Pointer to Caller ID data */

DESCRIPTION VpSendCid() transmits Caller ID data on-demand. This function differs from VpInitCid() in
that VpInitCid() sends Caller ID data automatically during the ringing cadence. This function
enables off-hook Caller ID, also known as Type-II or Call Waiting Caller ID. VpSendCid() is a
more flexible method of sending Caller ID than VpInitCid().

The pCidProfile argument selects the desired Caller ID Profile. The timing information present
in the Caller ID Profile, such as the relationship between the start of Caller ID transmission and the
ringing cadence, is not applicable to this function and is ignored.

The pCidData argument should point to a buffer containing the Caller ID message. Refer to
VpInitCid(), on page 78 for move information on handling the Caller ID data.

For VCP devices, the pCidProfile argument must be a Caller ID Profile table index. This
function can not directly load a Caller ID Profile from host memory into the VCP.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_CID_DATA, on page 67

DEVICES All

TERMINATIONS FXS

93

V P A P I - I I U S E R ’ S G U I D E

7.2.7 VpContinueCid()
SYNTAX VpStatusType

VpContinueCid(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 uint8 length /* Length of Caller ID data */

 uint8p pCidData) /* Pointer to the Caller ID data */

DESCRIPTION This function writes more Caller ID data to the VTD Caller ID data buffer. This function should be
called each time the VP_LINE_EVID_CID_DATA:VP_CID_DATA_NEED_MORE_DATA event
occurs and there is additional Caller ID data to transmit on the relevant line. If VpContinueCid()
is not called in response to this event, then the VTD transmits the remaining message data followed
by the checksum with the previous buffer contents. This function is necessary for both Type-I and
Type-II Caller ID implementations.

The pCidData argument should point to a buffer containing the next segment of Caller ID data, up
to 16 bytes in length. Data blocks longer than 16 bytes are not supported.

The VP_LINE_EVID_CID_DATA:VP_CID_DATA_TX_DONE event occurs once all of the Caller ID
data is transmitted.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_CID_DATA, on page 67

DEVICES CSLAC, VCP

TERMINATIONS FXS

94

V P A P I - I I U S E R ’ S G U I D E

7.2.8 VpStartMeter()
SYNTAX VpStatusType

VpStartMeter(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 uint16 onTime, /* Pulse on time in 10ms increments */

 uint16 offTime, /* Pulse off time in 10ms increments */

 uint16 numMeters) /* Number of meter cycles to perform */

DESCRIPTION This function starts metering pulses on the line associated with the line context argument pLineCtx.
The metering behavior is defined by onTime, offTime, and numMeters, which defines the on/off
timing of each meter pulse. The numMeters argument determines the number of pulses generated.
This function assumes that the user has specified the Metering Pulse Profile using the
VpInitMeter() function. See VpInitMeter(), on page 79. If VpInitMeter() is not called
sometime prior to this function, then the VTD default meter parameters are used. If numMeters is
zero, then any active metering sequence is terminated. If onTime is zero and numMeters is non-
zero, then an infinite metering signal is played until this function is called with numMeters equal to
zero. This allows the host to control the on/off cadence if desired.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED

VP_LINE_EVID_MTR_CMP, on page 66
VP_LINE_EVID_MTR_ABORT, on page 66
VP_LINE_EVID_MTR_CAD, on page 66

DEVICES All

TERMINATIONS FXS

95

V P A P I - I I U S E R ’ S G U I D E

7.2.9 VpSetOption()
SYNTAX VpStatusType

VpSetOption(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpDevCtxType *pDevCtx, /* Pointer to the Device Object */

 VpOptionIdType option, /* Selects the option to modify */

 void *pValue) /* Pointer to the option’s new value */

DESCRIPTION This function sets an option to the specified value for one or more lines. The option argument
determines which option is modified. Options may be line-specific or device-specific. Refer to Chapter
4, on page 33 for a complete list and definition of all VP-API-II options.

This function acts on one or more lines depending on the values of the device context, line context,
and option arguments. The table below summarizes this behavior. The "Option" column indicates
whether the target option is device-specific or line-specific. The "Device Ctx" and "Line Ctx" columns
indicate whether a valid pointer or VP_NULL is passed for the pDevCtx and pLineCtx parameters,
respectively.

Notice that device-specific options apply to all lines controlled by the device, regardless of whether a
line context or a device context argument is given in the call to VpSetOption().

The arguments required for each option are different. Therefore, a void pointer (pValue) is provided
as the option input parameter to the function. This argument must point to an initialized instance of the
input structure related to the target option. For example, if the device critical fault options are being set,
then pValue must point to an initialized instance of VpOptionCriticalFltType. Chapter 4, on
page 33 describes the input parameter type for each option.

All options are set to their default values after the device is initialized as a result of calling the
VpInitDevice() function (see VpInitDevice(), on page 71). Therefore, options should only be
changed after device initialization is complete, as indicated by the VP_DEV_EVID_DEV_INIT_CMP
event. Line-specific options are also reset as a result of calling the VpInitLine() function. The
application should set these line-specific options to their desired values after line initialization is
complete, as indicated by the VP_LINE_EVID_LINE_INIT_CMP event.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None.

DEVICES All

TERMINATIONS All

Table 7–1 VpSetOption() Behavior

Option Device Ctx Line Ctx Result

device VP_NULL VP_NULL returns VP_STATUS_INVALID_ARG

device VP_NULL valid returns VP_STATUS_INVALID_ARG

device valid VP_NULL sets option for the specified device

device valid valid returns VP_STATUS_INVALID_ARG

line VP_NULL VP_NULL returns VP_STATUS_INVALID_ARG

line VP_NULL valid sets option for the specified line

line valid VP_NULL sets option for all lines of the specified device

line valid valid returns VP_STATUS_INVALID_ARG

96

V P A P I - I I U S E R ’ S G U I D E

7.2.10 VpDeviceIoAccess()
SYNTAX VpStatusType

VpDeviceIoAccess(

 VpDevCtxType *pDevCtx, /* Pointer to device context */

 VpDeviceIoAccessDataType
 *pDeviceIoData)

/* Pointer to I/O access control struct */

DESCRIPTION This function accesses the device input/output (I/O) pins of the VTD. Refer to
VP_DEVICE_OPTION_ID_DEVICE_IO, on page 44 for more information on I/O pin configuration
and restrictions. This function takes a pointer to the following structure type:

typedef struct {
VpDeviceIoAccessType accessType;/* Device I/O access type */
uint32 accessMask_31_0; /* I/O access mask (Pins 0 - 31) */
uint32 accessMask_63_32; /* I/O access mask (Pins 32 - 63) */
uint32 deviceIOData_31_0; /* Output pin data (Pins 0 - 31) */
uint32 deviceIOData_63_32; /* Output pin data (Pins 32 - 63) */

} VpDeviceIoAccessDataType;

The accessType parameter determines whether a read or write operation is performed on the I/O pins,
and it can take one of the following values:

Enumeration Data Type: VpDeviceIoAccessType:
VP_DEVICE_IO_WRITE /* Perform device I/O write access */
VP_DEVICE_IO_READ /* Perform device I/O read access */

The accessMask_63_32 and accessMask_31_0 variables are combined to make a single 64-bit
accessMask field, where each bit determines whether an individual pin is accessed (1) or ignored (0).
During an I/O write operation, the state of any pin with its accessMask bit set to 0 remains unchanged.
During an I/O read operation, the state of any pin with its accessMask bit set to 0 is reported as 0. For
a configuration that supports only 1 user I/O pin per channel, accessMask[N] sets the direction for
the I/O pin belonging to channel N. For a configuration that supports 2 user I/O pins per channel,
accessMask[2N] sets the direction for I/O Pin 0 belonging to channel N, and accessMask[2N+1]
sets the direction for I/O Pin 1 belonging to channel N. Unused accessMask bits that do not map to a
channel/pin are ignored. The following enumeration type can be used to set accessMask bits:

Enumeration Data Type: VpDeviceIoAccessMask:
VP_DEVICE_IO_IGNORE /* Ignore I/O access */
VP_DEVICE_IO_ACCESS /* Perform I/O access */

The deviceIOData_63_32 and deviceIOData_31_0 variables are combined to make a single 64-
bit deviceIOData field, where each bit determines the state of an individual output pin when a write
operation is performed. The deviceIOData field is mapped to I/O pins in the same manner as the
accessMask field described above. Note that deviceIOData is ignored if accessType is
VP_DEVICE_IO_READ.

This function generates the VP_DEV_EVID_IO_ACCESS_CMP event indicating that the requested I/O
access is done. The results of an I/O read operation are returned when this even occurs. Refer to
Section 5.5.12 for details.

Notes:

It is the user’s responsibility to determine how the I/O pins of the VTD (or SLAC devices in the case of
a VCP) are used in their system. Users must take care not to change the state of any I/O pins that are
reserved by the reference design to control relays or LCAS devices. Refer to
VP_DEVICE_OPTION_ID_DEVICE_IO, on page 44 for more information on I/O pin configuration
and restrictions.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_DEV_EVID_IO_ACCESS_CMP, on page 63

DEVICES All

TERMINATIONS All

97

V P A P I - I I U S E R ’ S G U I D E

7.2.11 VpSelfTest()
SYNTAX VpStatusType

VpSelfTest(

VpLineCtxType *pLineCtx) /* Pointer to line context */

DESCRIPTION This function performs the self-test sequence on the specified line, including a PCM loopback test.
It checks the control and communications paths between the device and the line circuit and verifies
the command channel (MPI/HBI bus) and voice channel (PCM bus). The VCP generates PCM traffic
and verifies the resulting loopback. This test takes approximately 1 second to complete.

The line under test must have its TX/RX timeslots assigned so that the VCP can transfer 16-bit data
on the PCM bus during this test. See VP_OPTION_ID_TIMESLOT, on page 38 and the notes
below for details. This test is intrusive and must not be run on a line supporting an active call. The
affected line is left in the standby state when the test is done.

The results of this test are returned through the VP_DEV_EVID_STEST_CMP event, described in
Section 5.6.1.

Notes:

1. This test can only be run on one line at a time.
2. The following restrictions are applicable if the PCM clock frequency is 8.192MHz or 4.096MHz

(not applicable for 2.048MHz)
a) Before running this test, the line must be configured to receive its PCM data on either

timeslot 48 or 50
b) This function temporarily prevents the VCP from receiving PCM data on timeslots 48

through 63. Therefore, the line under test must be configured to transmit its PCM data
on timeslots between 0 and 46. Also, the VCP can not decode DTMF digits on timeslots
48 through 63 while running VpSelfTest(). Refer to PCM Timeslot Restrictions, on page
107 for further details.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_DEV_EVID_STEST_CMP, on page 65

DEVICES VCP

TERMINATIONS All

98

V P A P I - I I U S E R ’ S G U I D E

7.2.12 VpLowLevelCmd()
SYNTAX VpStatusType

VpLowLevelCmd(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 uint8 *pCmdData, /* Pointer to command and data */

 uint8 len, /* The length of the cmd/data string */

 uint16 handle) /* Handle value returned with event */

DESCRIPTION This function is not recommended for use by the customer. Improper use of this function
could break the synchronization between VP-API-II and the VTD, resulting in unpredictable
behavior by the VP-API-II. The VP-API-II will not prevent the user from improperly using this
function. This function is implemented to enable debugging of the VP-API-II.

This function circumvents the VP-API-II and allows direct VTD access. It should be used for
debugging purposes only. The VP-API-II maintains copies of some VTD registers and information
about the VTD current state, so this function must be used with caution.

The set of low-level commands available through this function depends on which Zarlink
Semiconductor devices are used in the design. Refer to the appropriate Chip Set User’s Guide for
a description of the low-level commands. This function can issue both read and write commands.

The pLineCtx argument identifies the device/channel to which the command is issued. The
pCmdData arguments points to a command/data string whose format and content is device-
dependent. The len argument specifies the length of the command/data string in bytes minus one.
Finally, the handle argument determines the value of the handle attached to the events generated
by this function.

For write operations, the VP_LINE_EVID_LLCMD_TX_CMP event occurs when the low-level write
command is done. For read operations, the VP_LINE_EVID_LLCMD_RX_CMP event occurs when
the low-level read command is done. Upon receiving the VP_LINE_EVID_LLCMD_RX_CMP event,
the VpGetResults() function should be called to place the results into a buffer of len size.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED

VP_LINE_EVID_LLCMD_TX_CMP, on page 58
VP_LINE_EVID_LLCMD_RX_CMP, on page 59

DEVICES All

TERMINATIONS All

99

V P A P I - I I U S E R ’ S G U I D E

7.2.13 VpSetBFilter()
SYNTAX VpStatusType

VpSetLineState(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpBFilterModeType bFiltMode,
/* Selects the desired B-Filter Mode
(enable or disable) */

 VpProfilePtrType pAcProfile)
/* Pointer to AC profile containing
desired B-Filter values to program.
Used if B-Filter being enabled */

DESCRIPTION This function enables or disables the B-Filter on the ilne associated with pLineCtx. The valid settings
for bFiltMode are listed below.

Enumeration Data Type: VpBFilterModeType:
/* The following states are supported for FXS termination only */
VP_BFILT_DIS /* Disable the B-Filter */
VP_BFILT_EN /* Enable the B-Filter */

If VP_BFILT_EN is passed, then values provided in pAcProfile are loaded into the device. If
VP_BFILT_EN is passed and pAcProfile is VP_PTABLE_NULL, this function returns
VP_STATUS_INVALID_ARG. If VP_BFILT_DIS is passed, the B-Filter is disabled.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None.

DEVICES All

TERMINATIONS All

100

V P A P I - I I U S E R ’ S G U I D E

7.2.14 VpLineIoAccess()
SYNTAX VpStatusType

VpLineIoAccess(

 VpLineCtxType *pLineCtx, /* Pointer to line context */

 VpLineIoAccessType *pLineIoAccess,
/* Struct containing access type
and values to be written */

 uint16 handle)
/* Handle value returned with
event */

DESCRIPTION This function accesses some or all of the general-purpose input/output (GPIO) pins associated with
a particular line. Refer to VP_OPTION_ID_LINE_IO_CFG, on page 47 for information on I/O pin
configuration and restrictions. This function takes a pointer to the following structure type:

typedef struct {
 VpIoDirectionType direction;
 VpLineIoBitsType ioBits;
} VpLineIoAccessType;

The direction field determines whether a read or write operation is performed on the I/O pins. It
can take on the following values:

typedef enum {
 VP_IO_WRITE,
 VP_IO_READ,
} VpIoDirectionType;

The ioBits field is a VpLineIoBitsType struct:

typedef struct {
 uint8 mask;
 uint8 data;
} VpLineIoBitsType;

The mask field contains a bit for each GPIO pin associated with the line. For each bit in this field, if
the bit is set, then the corresponding GPIO pin is accessed; if the bit is 0, then the corresponding GPIO
pin is left alone.

The data field also contains a bit for each GPIO pin associated with the line. For write operations
(VP_IO_WRITE), the GPIO pins are set to the values specified in this field only if the corresponding
bit in the mask field is set. For read operations (VP_IO_READ), the values of the GPIO pins are
returned with the VP_LINE_EVID_IO_RD_CMP event onlly if the corresponding bit in the mask field
is set (otherwise 0 is returned).

For write operations, the VP_LINE_EVID_LINE_IO_WR_CMP event occurs when the GPIO write
command is done. For read operations, the VP_LINE_EVID_LINE_IO_RD_CMP event occurs when
the GPIO read command is done. Upon receiving the VP_LINE_EVID_LINE_IO_RD_CMP event, the
VpGetResults() function should be called to place the results into a VpLineIoAccessType
buffer.

Notes:
It is the user’s responsibility to determine how the I/O pins of the VTD (or SLAC devices in the case
of a VCP) are used in their system. Users must take care not to change the state of any I/O pins that
are reserved by the reference design to control relays or LCAS devices. Refer to
VP_OPTION_ID_LINE_IO_CFG, on page 47 for more information on I/O pin configuration and
restrictions.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED

VP_LINE_EVID_LINE_IO_RD_CMP, on page 64
VP_LINE_EVID_LINE_IO_WR_CMP, on page 64

DEVICES VCP2

TERMINATIONS All

101

V P A P I - I I U S E R ’ S G U I D E

7.2.15 VpDeviceIoAccessExt()
SYNTAX VpStatusType

VpDeviceIoAccessExt(

 VpDevCtxType *pDevCtx, /* Pointer to device context */

 VpDeviceIoAccessExtType *pDeviceIoAccess)
/* Struct containing access
type and values to be written
*/

DESCRIPTION This function accesses some or all of the general-purpose input/output (GPIO) pins associated with a
device in a single operation. This function is now preferred instead of the deprecated
VpDeviceIoAccess() function. Refer to VP_DEVICE_OPTION_ID_DEV_IO_CFG, on page 46
and VP_OPTION_ID_LINE_IO_CFG, on page 47 for information on I/O pin configuration and
restrictions. This function takes a pointer to the following structure type:

typedef struct {
 VpIoDirectionType direction;
 VpLineIoBitsType lineIoBits[VP_MAX_LINES_PER_DEVICE];
} VpDeviceIoAccessExtType;

The direction field determines whether a read or write operation is performed on the I/O pins. It can
take on the following values:

typedef enum {
 VP_IO_WRITE,
 VP_IO_READ,
} VpIoDirectionType;

The lineIoBits array contains a VpLineIoBitsType element for each line controlled by the device.
See VpLineIoAccess(), on page 100 for a description of this struct containing line-specific GPIO
access information. The number of array elements is VP_MAX_LINES_PER_DEVICE, a compile-time
option specified in vp_api_cfg.h.

This function generates the VP_DEV_EVID_IO_ACCESS_CMP event indicating that the requested I/O
access is done. The results of an I/O read operation are returned when this even occurs. Refer to
Section 5.5.12 for details.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_DEV_EVID_IO_ACCESS_CMP, on page 63

DEVICES VCP2

TERMINATION
S All

102

V P A P I - I I U S E R ’ S G U I D E

CHAPTER

103

8 STATUS AND QUERY
FUNCTIONS

8.1 OVERVIEW

This chapter describes VP-API-II functions that get information and events from the VTD, including
the following:

• VpGetEvent() – Returns events corresponding to a device.
• VpGetLineStatus() – Returns the state of a particular status flag for one line.
• VpGetDeviceStatus() – Returns the state of a particular status flag for up to 32 lines.
• VpGetLoopCond() – Reads loop conditions for an FXS line and returns parameters such as

voltage, current, and resistance.
• VpGetOption() – Returns the current setting of an option.
• VpGetLineState()– Reads the current line state.
• VpFlushEvents() – Flushes all outstanding events.
• VpGetResults() – Reads the data associated with an event.
• VpClearResults() – Discards the data associated with an event.
• VpCodeCheckSum() – Returns a checksum of the VTD code memory.
• VpGetDeviceStatusExt() – Returns the state of a particular status flag for all lines of a

device. An extended replacement for VpGetDeviceStatus().

104

V P A P I - I I U S E R ’ S G U I D E

8.2 FUNCTION DESCRIPTIONS

8.2.1 VpGetEvent()
SYNTAX bool

VpGetEvent(

VpDevCtxType *pDevCtx, /* Pointer to device context */

VpEventType *pEvent) /* Pointer to target event data buffer */

DESCRIPTION The VpGetEvent() function reports a single VTD event. This function should be called whenever
the VTD interrupt occurs.

The pDevCtx argument must point to the context of the VTD that is reporting an event. The pEvent
argument must point to an application buffer for the event data returned by this function. The
application buffer should be of VpEventType type, which is defined as follows:

typedef struct {
VpStatusType status; /* Function return status */
uint8 channelId; /* Channel which caused the event */
VpLineCtxType *pLineCtx; /* Pointer to the line context corresponding to

 * the line that caused the event */
 VpLineIdType lineId; /* Application provided line Id to ease mapping
 * of lines to specific line contexts. */

VpDeviceIdType deviceId; /* Id of the device that caused the event */
VpDevCtxType *pDevCtx; /* Pointer to the device context corresponding to

 * the device that caused the event */
VpEventCategoryType
 eventCategory; /* Event category */
uint16 eventId; /* Unique event ID (within event category) */
uint16 parmHandle; /* Event’s parameter or application handle */
uint16 eventData; /* Data associated with the event */
bool hasResults; /* Indicates whether event has extra results */

} VpEventType;

The status variable indicates whether an error occurred while executing this function. This
function’s boolean return value indicates whether an event was retrieved from the VTD. The
application should interpret these two variables as follows:

• status equal to VP_STATUS_SUCCESS and VpGetEvent() returned TRUE
An event was retrieved from the VTD, event data valid.

• status equal to VP_STATUS_SUCCESS and VpGetEvent() returned FALSE
No event was retrieved from the VTD, ignore event data.

• status not equal to VP_STATUS_SUCCESS
VpGetEvent() encountered an error that may need debugging. Ignore event data and function
return value. See VP-API-II Function Return Type, on page 11 for a complete list of error
codes.

If the event is line-specific, the channelId and pLineCtx variables indicate which line caused the
event. If the event is device-specific, channelId and pLineCtx should be ignored. The deviceId
and pDevCtx variables always identify the device that caused the event.

Events are classified into event categories so that the application can easily process them. The
eventCategory member of the event structure indicates which category the event belongs to;
eventCategory can be any of the following values:

Enumeration Data Type: VpEventCategoryType:
VP_EVCAT_FAULT /* Fault event category */
VP_EVCAT_SIGNALING /* Signaling event category */
VP_EVCAT_RESPONSE /* Response event category */
VP_EVCAT_TEST /* Test event category */
VP_EVCAT_PROCESS /* Call Process event category */
VP_EVCAT_FXO /* FXO event category */
VP_EVCAT_PACKET /* Packet event category */

The individual event ID is passed through the eventId member of the event structure. Refer to
Chapter 5, on page 49 for a complete list of the individual event ID names. Note that the event ID
constants are only unique within the applicable event category.

105

V P A P I - I I U S E R ’ S G U I D E

The parmHandle and eventData variables contain additional event-specific information. The
boolean hasResults variable indicates whether additional data related to the event is present in the
mailbox. The application must either retrieve the additional data using VpGetResults() or de-
queue the data by calling VpClearResults(). Chapter 5, on page 49 describes the
parmHandle, eventData, and extended results for each VP-API-II event.

Notes:

This function returns only non-masked events. Events masks are set by calling VpSetOption()
with the VP_OPTION_ID_EVENT_MASK option. The default event masks are set when
VpInitDevice() function is called.

RETURNS TRUE if an event is pending FALSE otherwise. See function description for details.

EVENTS
GENERATED None—this function is called to retrieve an event.

DEVICES All

TERMINATIONS All

106

V P A P I - I I U S E R ’ S G U I D E

8.2.2 VpGetLineStatus()
SYNTAX VpStatusType

VpGetLineStatus(

VpLineCtxType *pLineCtx, /* Pointer to line context */

VpInputType input /* Test the status of this input type */

bool *pStatus) /* Pointer to status results */

DESCRIPTION This function obtains the status of the specified input for the line associated with pLineCtx. The
status result is written to the location pointed to by the argument pStatus. The following line inputs
can be checked with this function:

Enumeration Data Type: VpInputType:
/* FXS Status types */
VP_INPUT_HOOK /* Hook Status (ignoring pulse & flash) */
VP_INPUT_RAW_HOOK /* Hook Status (include pulse & flash) */
VP_INPUT_GKEY /* Ground-Key/Fault Status */
VP_INPUT_THERM_FLT /* Thermal Fault Status */
VP_INPUT_CLK_FLT /* Clock Fault Status */
VP_INPUT_AC_FLT /* AC Fault Status */
VP_INPUT_DC_FLT /* DC Fault Status */
VP_INPUT_BAT1_FLT /* Battery 1 Fault Status */
VP_INPUT_BAT2_FLT /* Battery 2 Fault Status */
VP_INPUT_BAT3_FLT /* Battery 3 Fault Status */

/* FXO Status types */
VP_INPUT_RINGING /* Ringing Status */
VP_INPUT_LIU /* Line In Use Status */
VP_INPUT_FEED_DIS /* Feed Disable Status */
VP_INPUT_FEED_EN /* Feed Enable Status */
VP_INPUT_DISCONNECT /* Feed Disconnect Status */
VP_INPUT_CONNECT /* Feed Connect Status */
VP_INPUT_POLREV /* Polarity Reversal Status */

The boolean status result, pointed to by pStatus, is interpreted differently depending on the type of
input queried:

• Fault flags are either active (TRUE) or inactive (FALSE).
• Hook status is either off-hook (TRUE) or on-hook (FALSE). When automatic pulse-digit decoding is

disabled, the values for VP_INPUT_HOOK and VP_INPUT_RAW_HOOK are identical. When pulse-
digit decoding is enabled, VP_INPUT_RAW_HOOK reflects the current state of the line’s hook
detector, while VP_INPUT_HOOK represents the logical hook state after filtering pulse-digit and
hook-switch flash events.

• Ground key status is either active (TRUE) or inactive (FALSE).
• FXO line conditions are simply either TRUE or FALSE (e.g., line is in a reversed polarity if

VP_INPUT_POLREV is TRUE).

This function returns the VP_STATUS_INVALID_ARG error if the application requests status
information for the wrong type of line termination (e.g. requesting FXS status for an FXO termination).

Notes:
1. This function returns the status of one input for a single line. VpGetDeviceStatusExt() returns

an array of status flags for all lines controlled by a device. See VpGetDeviceStatusExt(), on
page 114 for further information.

2. An active ground-key may be considered a fault by the application when the line is not used in a
ground-start system. Ground-key and DC fault are polarity sensitive and although they both
monitor longitudinal currents, either one may appear as an indication of a line fault depending on
the polarity of the fault current.

3. See Table 5–3 to convert generic battery names (bat1, bat2, etc.) to device-specific battery
names (VBH, VBL, etc.).

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

107

V P A P I - I I U S E R ’ S G U I D E

8.2.3 VpGetDeviceStatus()
SYNTAX VpStatusType

VpGetDeviceStatus(

VpDevCtxType *pDevCtx, /* Pointer to device context */

VpInputType input, /* Test the status of this input type */

uint32 *pDeviceStatus) /* Pointer to status results */

DESCRIPTION This function returns the status of the requested input for all lines the device supports (up to 32
lines). This function is now deprecated in favor of VpGetDeviceStatusExt() (see
VpGetDeviceStatusExt(), on page 114), which can return status information for more than 32
lines.

Each bit in the result represents the status of input for one line. The status result is written to the
location pointed to by pDeviceStatus. The least significant bit represents line 1. Each successive
bit represents the next line, up to the most significant bit which represents line 32. If a device only
supports N lines, then only the least-significant N bits of the result are meaningful. Refer to
VpGetLineStatus(), on page 106 for the type definition of the input argument and for
information on decoding the status flags.

Notes:

1. If a device supports both FXS and FXO terminations, the returned status information is only valid
for lines whose termination type matches the requested input type. For example, if the application
requests the status of an FXO input, the result bits for all FXS lines should be ignored.

2. An active ground-key may be considered a fault by the application when the line is not employed
in a ground-start system.

3. This function returns the status for all lines multiplexed into one 32-bit result.
VpGetLineStatus() returns a boolean result for one specific line. See VpGetLineStatus(),
on page 106 for further information.

4. If the device has more than 32 channels, the 32-bit result contains the results for the first 32
channels on the device. If status information is needed about other channels, see
VpGetDeviceStatusExt(), on page 114.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

108

V P A P I - I I U S E R ’ S G U I D E

8.2.4 VpGetLoopCond()
SYNTAX VpStatusType

VpGetLoopCond(

VpLineCtxType *pLineCtx, /* Pointer to line context */

uint16 handle) /* Handle value returned with event */

DESCRIPTION This function starts a process that eventually returns the current loop and battery conditions for the
specified line. Several measurements are taken from the device when this function is called.
However, these measurements may not be taken simultaneously. The VP_LINE_EVID_RD_LOOP
event occurs when the results are available for the application to read. The application can execute
this function while the target line is in any state. However, some measurement results may not be valid
in certain line states. See VP_LINE_EVID_RD_LOOP, on page 60 for details.

Notes:
1. For the VCP-880 configuration:

a) The measurement process takes approximately 30 ms. During that time, the voice path is
disabled in the 880 device’s transmit direction. This could cause a noticeable interruption
in voice service.

b) The application must not call the following VP-API-II functions for a line that is measuring
loop conditions: VpSetLineState(), VpSetLineTone(), VpInitLine(),
VpConfigLine(), VpInitDevice() or VpSetOption(VP_OPTION_ID_LOOPBACK).

2. This function can consume a significant amount of MPI bandwidth. Frequently calling this function
could degrade system performance. Use caution if polling this function.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_RD_LOOP, on page 60

DEVICES CSLAC-790, VCP, VPP

TERMINATIONS FXS

109

V P A P I - I I U S E R ’ S G U I D E

8.2.5 VpGetOption()
SYNTAX VpStatusType

VpGetOption(

VpLineCtxType *pLineCtx, /* Pointer to line context */

VpDevCtxType *pDevCtx, /* Pointer to the device context */

VpOptionIdType option, /* Selects the option to get */

uint16 handle) /* Handle value returned with event */

DESCRIPTION This function retrieves the current setting of an option applied to the specified device or line. The
option argument determines which option is read. For a list and description of all VP-API-II options
see Chapter 4.

VpGetOption() actually starts a process in the VP-API-II/VTD that retrieves the requested data
from a device. This function does not wait for the data to become available. Instead, this function
returns immediately, and an event occurs at some later time indicating that the requested data is
available.

This exact option setting that is retrieved by this function depends on the values of the device
context, line context, and option arguments. The table below summarizes this behavior. The
"Option" column indicates whether the target option is device-specific or line-specific. The "Device
Ctx" and "Line Ctx" columns indicate whether a valid pointer or VP_NULL is passed for the pDevCtx
and pLineCtx parameters, respectively.

The VP_LINE_EVID_RD_OPTION event is generated as a result of this function call, indicating that
the requested option data is available. The handle argument to VpGetOption() specifies the
event handle that is attached to this event. Upon receiving this event, the application must call
VpGetResults() with a pointer to the appropriate data structure to retrieve the option settings.
The Refer to VP_LINE_EVID_RD_OPTION, on page 59 for more information on retrieving the
option data associated with this event.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_LINE_EVID_RD_OPTION, on page 59

DEVICES All

TERMINATIONS All

Table 8–1 VpGetOption() Behavior

Option Device Ctx Line Ctx Result

device VP_NULL VP_NULL returns VP_STATUS_INVALID_ARG

device VP_NULL valid gets option for device that controls the specified line

device valid VP_NULL gets option for the specified device

device valid valid returns VP_STATUS_INVALID_ARG

line VP_NULL VP_NULL returns VP_STATUS_INVALID_ARG

line VP_NULL valid gets option for the specified line

line valid VP_NULL returns VP_STATUS_INVALID_ARG

line valid valid returns VP_STATUS_INVALID_ARG

110

V P A P I - I I U S E R ’ S G U I D E

8.2.6 VpGetLineState()
SYNTAX VpStatusType

VpGetLineState(

VpLineCtxType *pLineCtx, /* Pointer to line context */

VpLineStateType *pCurrentState) /* Ptr to store line state */

DESCRIPTION This function retrieves the current state of the specified line. The line state is written to the location
pointed to by pCurrentState. VpSetLineState(), on page 84 describes the line states.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

111

V P A P I - I I U S E R ’ S G U I D E

8.2.7 VpFlushEvents()
SYNTAX VpStatusType

VpFlushEvents(

VpDevCtxType *pDevCtx) /* Pointer to device context */

DESCRIPTION This function empties the VP-API-II event queue. This function does not clear the VP-API-II results
buffer; it only clears the pending event queue.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

112

V P A P I - I I U S E R ’ S G U I D E

8.2.8 VpGetResults()
SYNTAX VpStatusType

VpGetResults(

VpEventType *pEvent, /* Ptr to event that was filled by VpGetEvent() */

void *pResults) /* Pointer to buffer for the results */

DESCRIPTION This function retrieves data associated with an event. Recall from Chapter 5 that events with attached
results have their hasResults members set to TRUE. The application must either read the results
using VpGetResults() or discard the results by calling VpClearResults() (see
VpClearResults(), on page 113).

To read results from the VTD, the application must allocate a buffer large enough to hold the result
structure, then call this function with a pointer to that buffer. This function copies the result data into the
application’s buffer and frees the VP-API-II result buffer. The function uses the pEvent argument to
determine what type of results are being copied. The application should simply pass a pointer to the
same event returned by VpGetEvent(). Table 8–2 lists all VP-API-II functions that generate results
along with the corresponding event ID and results data type.

Notes:

1. The application can also use this function to determine the type of result data waiting in the result
buffer. To use this mode of operation, this function should be called with the pResults argument
equal to VP_NULL. When VpGetResults() is called in this mode, it overwrites the
eventCategory and eventId members of the event structure passed to this function. Note that
the event passed to this function must contain a valid deviceId and device context pointer
(pDevCtx). If there are no results waiting in the buffer, the eventId member in event structure
(pEvent) is overwritten with all zeros.

2. When reading options using VpGetOption(), the application can use the eventData member of
the event structure (VpEventType) to determine the option type (VpOptionIdType) that was
read.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

Table 8–2 VP-API-II Functions with Extended Results

Function Event ID Result Type

VpBootLoad() VP_DEV_EVID_BOOT_CMP VpChkSumType

VpSetRelGain() VP_LINE_EVID_GAIN_CMP VpRelGainResultsType

VpLowLevelCmd() VP_LINE_EVID_LLCMD_RX_CMP uint8p

VpGetLoopCond() VP_LINE_EVID_RD_LOOP VpLoopCondResultsType

VpGetOption() VP_LINE_EVID_RD_OPTION See Section 8.2.5.

VpCodeChecksum() VP_DEV_EVID_CHKSUM VpChkSumType

VpDeviceIoAccess() VP_DEV_EVID_IO_ACCESS_CMP VpDeviceIoAccessDataType

VpDeviceIoAccessExt() VP_DEV_EVID_IO_ACCESS_CMP VpDeviceIoAccessExtType

VpLineIoAccess()
VP_LINE_EVID_LINE_IO_RD_CMP
VP_LINE_EVID_LINE_IO_WRT_CMP

VpLineIoAccessType

113

V P A P I - I I U S E R ’ S G U I D E

8.2.9 VpClearResults()
SYNTAX VpStatusType

VpClearResults(

VpDevCtxType *pDevCtx) /* Pointer to device context */

DESCRIPTION This function clears the VP-API-II results buffer, thereby making room for more results. The
application can call this function instead of VpGetResults() if it does not care about the results
associated with an event.

The VP-API-II results queue provides access to only one result. In other words, calling this function
deletes only the top results queue entry. This function can be called even when there are no
outstanding results in the queue, in which case it simply returns VP_STATUS_SUCCESS.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

114

V P A P I - I I U S E R ’ S G U I D E

8.2.10 VpCodeCheckSum()

8.2.11 VpGetDeviceStatusExt()

SYNTAX VpStatusType

VpCodeCheckSum(

 VpDevCtxType *pDevCtx, /* Pointer to device context */

 uint16 handle) /* Handle value returned with event */

DESCRIPTION This function starts a checksum calculation of the VTD code memory. This function can be called
at any time after the VTD is boot-loaded and does not interfere with normal operation of the device.
When the device completes the checksum calculation, it writes the checksum into the results buffer
and generates the VP_DEV_EVID_CHKSUM event. The checksum result is passed through the
VpChkSumType structure. See VP_DEV_EVID_BOOT_CMP, on page 58 for a description of
this type.

RETURNS See VP-API-II Function Return Type, on page 11
EVENTS
GENERATED VP_DEV_EVID_CHKSUM, on page 65

DEVICES VCP, VPP

TERMINATIONS All

SYNTAX VpDevCtxType *pDevCtx, VpDeviceStatusType
*pDeviceStatus

VpGetDeviceStatusExt(

 VpDevCtxType *pDevCtx, /* Pointer to device context */

 VpDeviceStatusType *pDeviceStatus)
/* Struct containing
parameters and results. */

DESCRIPTION This function is an extended version of VpGetDeviceStatus() (see page 107) with support for devices
with more than 32 channels. The two functions differ only in the format of the results struct. This
function accepts a pointer to a VpDeviceStatusType struct:

typedef struct {
 VpInputType input;
 uint8 status[VP_LINE_FLAG_BYTES];
} VpDeviceStatusType;

It returns the status of the requested input for all lines controlled by the device. Each bit in the status
field represents the status of input for one line.

The number of array elements, VP_LINE_FLAG_BYTES = (VP_MAX_LINES_PER_DEVICE + 7) / 8,
is the number of eight-bit integers required to store a flag for each channel in the device.
VP_MAX_LINES_PER_DEVICE is a compile-time option defined in vp_api_cfg.h. Bit 0 in array element
0 represents line 0, bit 1 represents line 1, and so on. Bit 0 in array element 1 represents line 8.

Refer to VpGetLineStatus(), on page 106 for the type definition of the input argument and for
information on decoding the status flags.

Notes:

1. If a device supports both FXS and FXO terminations, the returned status information is only valid for
lines whose termination type matches the requested input type. For example, if the application
requests the status of an FXO input, the result bits for all FXS lines should be ignored.

2. An active ground-key may be considered a fault by the application when the line is not employed in
a ground-start system.

3. This function returns the status for all lines multiplexed into an array of eight-bit results.
VpGetLineStatus() returns a boolean result for one specific line. See VpGetLineStatus(), on
page 106 for further information.

RETURNS See VP-API-II Function Return Type, on page 11

115

V P A P I - I I U S E R ’ S G U I D E

EVENTS
GENERATED None.

DEVICES VCP2

TERMINATIONS All

116

V P A P I - I I U S E R ’ S G U I D E

CHAPTER

117

9 SYSTEM SERVICES

9.1 OVERVIEW

The System Services layer provides critical section, timing and interrupt control functions. These functions are
system-dependent and must be implemented specifically for each platform on which the VP-API-II is used. The
following functions are included in the System Services layer.

• VpSysEnterCritical() – Blocks entry into a critical section of VP-API code through some
user-defined method.

• VpSysExitCritical() – Marks the end of a VP-API critical code section.

9.2 VP-API-II REENTRENCY

The term “reentrant” is defined as:

A computer program or routine is described as reentrant if it is designed
such that a single copy of the program's instructions in memory can be
shared by multiple users or separate processes. The key to the design of
a reentrant program is to ensure that no portion of the program code is
modified by the different users/processes, and that process-unique
information (such as local variables) is kept in a separate area of memory
that is distinct for each user or process. Reentrant programming is key to
many systems of multitasking.

 http://en.wikipedia.org/wiki/Reentrant

The VP-API-II supports reentrant application development. Reentrency does not mean that a function always
completes its intended action when called more than once simultaneously (reentered). Reentrency means that
a function can detect whether it has been reentered and either completes its intended action or returns an error
notifying the caller that the function was not successful. In either case the behavior of the reentrant function
must be consistent and well-defined.

The VP-API-II follows this strategy. VP-API-II functions return an error code (VP_STATUS_IN_CRTCL_SECTN)
when they are reentered but are unable to perform the desired function because more than one thread needs
access to a shared resource. There are a few different types of shared resources in the VoicePath system that
must be protected from simultaneous access: device objects, line objects, and device resources. Recall from
Section 3.2 that device objects and line objects are data structures that retain state information for devices
and lines respectively. VP-API-II functions that modify these objects are protected from reentrant execution.
Device resources are physical components or features of a device. Some device resources, such as the HBI
or MPI, must also be protected from simultaneous access. The VP-API-II reentrancy protection scheme
behaves differently depending on the type of shared resource being protected. Table 9–1 summarizes this
behavior.

http://en.wikipedia.org/wiki/Reentrant

118

V P A P I - I I U S E R ’ S G U I D E

Table 9–1 VP-API-II Reentrency Behavior

Objects Accessed by
First API Func. Call

Objects Accessed by
Reentrant API Call(s) Reentrency Behavior

Line-Specific VP-API Functions

Line: X

Device: X

Line: X

Device: X

Executing any two line-specific VP-API functions simultaneously on
the same line of the same device returns a critical section error for
the reentrant function call(s).

Line: X

Device: X

Line: Any other than X

Device: X

Executing any two line-specific VP-API functions simultaneously on
different lines of the same device may return a critical section error,
depending on whether any shared device resources are accessed
by the functions. Also, if a line-specific function is using a device
resource, then calling a device-specific function on the same device
results in a critical section error because the device resource is
unavailable.

Line: Any

Device: X

Line: Any

Device: Any other
than X

All VP-API functions complete successfully when the devices they
access are different.

Device-Specific VP-API Functions

Line: Any

Device: X

Line: Any

Device: X

Executing any two device-specific VP-API functions simultaneously
on the same device results in a critical section error for the reentrant
function call(s).

119

V P A P I - I I U S E R ’ S G U I D E

9.3 FUNCTION DESCRIPTIONS

9.3.1 VpSysEnterCritical()
SYNTAX uint8

VpSysEnterCritical(

VpDeviceIdType deviceId, /* Selects the target device */

VpCriticalSecType criticalSecType)
/* Indicates critical section type
*/

DESCRIPTION This function protects critical sections of VP-API-II code from reentrant execution. The application
developer must implement this function such that, for a given device, no VP-API-II functions can be
called from another thread of execution while any thread is within a critical section. This is typically done
by disabling appropriate interrupts or "taking" a task-blocking semaphore.

The deviceId argument indicates which device resource or object is being accessed during this
critical section. In systems with more than one VTD attached to the host microprocessor, the application
can use this information to limit the number of interrupts disabled or tasks blocked by semaphores to
only those interrupts or tasks that are related to a specific device. In most implementations the
deviceId argument can simply be ignored.

The criticalSecType argument specifies the type of critical section being entered, and may take
one of the following values:

Enumeration Data Type: VpCriticalSecType:
VP_MPI_CRITICAL_SEC
VP_HBI_CRITICAL_SEC
VP_CODE_CRITICAL_SEC

MPI critical sections do not apply to VCP or VPP devices. HBI critical sections occur around HBI
transactions. HBI transactions must not be interrupted. Code critical sections are used to protect global
data (device and line objects) from simultaneous access by more than one thread of execution.

In the simplest case, the same protection mechanism can be used for all critical section types.
Alternatively, the application may choose to protect different types of critical sections using different
mechanisms. For example, HBI/MPI critical sections could be protected by disabling all relevant
interrupts, while code critical sections could be protected by semaphores. The decision is left to the
application developer.

VpSysEnterCritical() and VpSysExitCritical() should be implemented such that critical
sections could be nested within the VP-API-II. For example, a HBI/MPI critical section, or even a code
critical section, could occur within a code critical section. Note that no other critical sections will ever
occur within a HBI/MPI critical section. VpSysEnterCritical() should return the current critical
section nesting level.

Notes:

If the application is designed such that all VP-API-II calls are made from only one thread of execution,
then this function can simply return 1. That is, no critical section protection is actually required in this
case.

RETURNS The nesting level after the call is completed.

EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

120

V P A P I - I I U S E R ’ S G U I D E

9.3.2 VpSysExitCritical()
SYNTAX uint8

VpSysExitCritical(

VpDeviceIdType deviceId, /* Selects the target device */

VpCriticalSecType criticalSecType) /* Indicates critical section type */

DESCRIPTION The VP-API-II calls this function at the end of a critical code section. This function should restore the
critical section protection (interrupt, semaphore, etc.) state to its condition prior to the last
VpSysEnterCritical() call. This is typically done by enabling appropriate interrupts or "giving" a
task-blocking semaphore. See VpSysEnterCritical(), on page 119 for descriptions of the deviceId
and criticalSecType input parameters.

This function should be implemented such that nesting of any critical section beneath a code critical
section is allowed. VpSysExitCritical() should return the current critical section nesting level.

RETURNS The nesting level after the call is completed.

EVENTS
GENERATED None

DEVICES All

TERMINATIONS All

CHAPTER

121

10 HARDWARE
ABSTRACTION LAYER

10.1 OVERVIEW

The Hardware Abstraction Layer (HAL) defines functions for communicating with a target VTD through the MPI
or HBI. These functions hide the details of the platform MPI/HBI hardware design from the VP-API-II. The
customer must implement these functions as appropriate for their specific platform. Zarlink Semiconductor
provides example implementations of these functions. The following functions are included in the HAL:

• VpHalHbiInit() – Initializes a VCP or VPP device for access through the HBI.
• VpHalHbiCmd() – Issues an HBI command.
• VpHalHbiWrite() – Performs HBI write transactions.
• VpHalHbiRead() – Performs HBI read transactions.
• VpHalHbiBootWr() – Performs boot-loading through the HBI.

All HAL functions take a deviceId argument that identifies the target VTD. This argument is of type
VpDeviceIdType, which is defined by the customer. The deviceId is part of the device object created by
the application at initialization. Note that the VP-API-II does not access the deviceId; it merely passes the
deviceId down to the HAL when accessing the associated VTD. This feature is useful for addressing a
specific VTD in systems where a single host microprocessor controls more than one VTD. This parameter may
be ignored in designs with only one VTD per host microprocessor.

HBI transactions are atomic operations in that once once starts on a particular device, it must complete before
another transaction can start for the same device. The VP-API-II protects all HBI transactions with
VpSysEnterCritical() and VpSysEnterCritical() to guarantee that they run without interruption on
the same device from another source. For more information please see Chapter 9, on page 117.

122

V P A P I - I I U S E R ’ S G U I D E

10.2 FUNCTION DESCRIPTIONS

10.2.1 VpHalHbiInit()
SYNTAX bool

VpHalHbiInit(

VpDeviceIdType deviceId) /* Device chip select identifier */

DESCRIPTION This function prepares the system for communicating through the HBI. The deviceId argument
indicates the target device. The HBI read and write functions should work after this function is
successfully executed. VpHalHbiInit() should be well-behaved even if called more than once
between system resets. This function is called from VpBootLoad() before sending the VCP or VPP
device firmware image through the HBI.

RETURNS This function returns TRUE on success or FALSE if the initialization command could not be written to
the device.

DEVICES VCP, VPP

TERMINATIONS All

123

V P A P I - I I U S E R ’ S G U I D E

10.2.2 VpHalHbiCmd()
SYNTAX bool

VpHalHbiCmd(

VpDeviceIdType deviceId, /* Device chip select identifier */

uint16 cmd) /* HBI Command word to be sent */

DESCRIPTION This function sends a command word over the HBI that has no associated data words. The
deviceId argument indicates the target device. The function accepts a command word through the
cmd argument that is written to the VCP or VPP device. The command word is always sent over the
HBI in big-endian byte order. This function is responsible for byte-swapping the command word if
necessary.

RETURNS This function returns TRUE on success or FALSE if the command could not be written to the device.

DEVICES VCP, VPP

TERMINATIONS All

124

V P A P I - I I U S E R ’ S G U I D E

10.2.3 VpHalHbiWrite()
SYNTAX bool

VpHalHbiWrite(

VpDeviceIdType deviceId, /* Device chip select identifier */

uint16 cmd, /* Command to write to the device */

uint8 numwords, /* Number of data bytes to write - 1 */

uint16p pData) /* Pointer to the data to write */

DESCRIPTION This function sends a command word and writes up to 256 data words over the HBI. The deviceId
argument indicates the target device. It accepts a HBI command through the cmd argument. The
command word is always sent over the HBI in big-endian byte order. This function is responsible for
byte-swapping the command word if necessary.

The pData parameter points to an array of data words. The numwords argument indicates the length
of the array pointed to by pData minus one. For example, if numwords is 255, then the actual number
of words to transmit is 256. No byte-swapping of data words is necessary in this function as long as
the device’s HBI is configured in VpHalHbiInit() to match the byte order of the host
microprocessor. If the pData is equal to zero, then this function should write numword zeros to the
device.

RETURNS This function returns TRUE on success or FALSE if the command/data could not be written to the
device.

DEVICES VCP, VPP

TERMINATIONS All

125

V P A P I - I I U S E R ’ S G U I D E

10.2.4 VpHalHbiRead()
SYNTAX bool

VpHalHbiRead(

VpDeviceIdType deviceId, /* Device chip select identifier */

uint16 cmd, /* Command to write to the device */

uint8 numwords, /* Number of data words to read - 1 */

uint16p pData) /* Pointer to the buffer to store data */

DESCRIPTION This function sends a command word and reads up to 256 data words over the HBI. The deviceId
argument indicates the target device. It accepts a HBI command through the cmd argument. The
command word is always sent over the HBI in big-endian byte order. This function is responsible for
byte-swapping the command word if necessary.

The pData parameter points to a receive buffer for the data read from the device. The numwords
argument specifies the number of words to read from the device minus one. No byte-swapping of data
words is necessary in this function as long as the device’s HBI is configured in VpHalHbiInit() to
match the byte order of the host microprocessor.

RETURNS This function returns TRUE on success or FALSE if the data could not be read from the device.

DEVICES VCP, VPP

TERMINATIONS All

126

V P A P I - I I U S E R ’ S G U I D E

10.2.5 VpHalHbiBootWr()
SYNTAX bool

VpHalHbiBootWr(

VpDeviceIdType deviceId, /* Device chip select identifier */

uint8 numwords, /* Number of data words to write - 1 */

VpImagePtrType pData) /* Pointer to the 8-bit data to write */

DESCRIPTION This function writes a string of bytes to the device and is used exclusively during the boot process. The
deviceId argument indicates the target device.

The pData argument points to the boot stream data, which is an opaque string of both command and
data words. All command and data words in the stream are arranged in big-endian byte order. This
function must copy words from the boot stream and write them to the device in big-endian byte order.

The HBI must be configured for big-endian byte order while the boot stream is being transmitted,
regardless of the byte order of the host platform. If VpHalHbiInit() configures the HBI for little-
endian byte order, then this function must temporarily change the configuration to big-endian, transmit
the boot stream, and change it back to little-endian before returning.

The numwords argument indicates the number of words (not bytes) in the boot stream minus one.

RETURNS This function returns TRUE on success or FALSE if the boot stream could not be written to the device.

DEVICES VCP, VPP

TERMINATIONS All

CHAPTER

127

11 INTERRUPT HANDLING

11.1 OVERVIEW

This chapter discusses how the VP-API-II handles VTD interrupts. VP-API-II functions must be invoked in
response to VTD hardware interrupts. Depending on the type of interrupt, the VP-API-II may update its internal
state or carry out other actions.

The complexity of the VP-API-II interrupt service routines varies depending on the type of device(s) being
controlled. Specifically, the interrupt service routines for CSLAC devices are significantly more complex than
those for the VCP and VPP devices. This is due to the fact that much of the real-time functionality implemented
in the VP-API-II for CSLAC is actually implemented within the VCP and VPP devices themselves. This version
of the document describes only the VCP/VPP device interrupt handling requirements.

11.2 HANDLING INTERRUPTS FROM VCP AND VPP DEVICES

Applications using the VCP or VPP devices need only call VpGetEvent() in response to VTD interrupts.
VpGetEvent() processes one interrupt at a time and returns an event data structure to the application
indicating the cause of the interrupt. In some cases, VpGetEvent() handles the interrupt itself and does
not return an event to the application. Refer to VpGetEvent(), on page 104 for details on that function.

The application may need to take further action after receiving an event. For example, the application may wish
to change a line’s state after receiving a hook event for that line. Note that most interrupt/event sources can be
masked (disabled). Refer to VP_OPTION_ID_EVENT_MASK, on page 41 for details on masking events.

3.

128

V P A P I - I I U S E R ’ S G U I D E

CHAPTER

129

A GLOSSARY

Channel See Section 1.1.2

Codec Coder/Decoder

CSLAC Conventional Zarlink Semiconductor SLAC™ device. For a complete list of
supported CSLAC products, please see Supported Hardware
Configurations, on page 5.

Device See Section 1.1.2

DTMF Dual-Tone Multi Frequency

FXO Foreign eXchange Office interface. This is the plug on the phone that receives
a Plain Old Telephone Service (POTS) signal, typically from a Central Office
(CO) of the Public Switched Telephone Network (PSTN). An FXO interface
points to the Telco office.

FXS Foreign eXchange Subscriber interface. This is the plug on the wall that delivers
a POTS signal from the local phone company’s CO and must be connected to
subscriber equipment such as telephones, modems, or fax machines. An FXS
interface points to the subscriber.

GPI General Purpose Parallel Interface. This is the VPP/VCP generic parallel port
interface for the host processor. It is one of two physical interfaces currently
available for the Host Bus Interface (HBI).

GR-909 Telcordia specification for Fiber in the Local Loop. GR-909 specifications for
metallic loop testing have become the testing guidelines for many short-loop
applications.

HBI Host Bus Interface. This is the host’s interface to the VCP or VPP.

ISR Interrupt Service Routine

LCAS Line Circuit Access Switch. LCAS devices are essentially solid-state relays
designed for telephony applications.

Line See Section 1.1.2

MPI Micro-Processor Interface. The MPI is Zarlink Semiconductor’s serial control
interface for CSLAC devices.

NTR Network Timing Reference

Profile Profiles encapsulate application specific data including cadencing, tones, Caller
ID parameters, etc.

ProfileWizard A Microsoft Windows application that creates and organizes VoicePath profiles,
included in the VoicePath SDK.

PSTN Public Switched Telephone Network

SLAC™ Subscribe Line Access Circuit, a Zarlink Semiconductor trademark.

SLIC Subscriber Line Interface Circuit

130

V P A P I - I I U S E R ’ S G U I D E

SPI Serial Peripheral Interface. This is a four wire serial control interface between
the VCP/VPP and the host processor that electrically conforms to the Motorola
SPI slave interface standard. It is one of two physical interfaces currently
available for the HBI.

Subscriber Line The analog telephone line connecting the subscriber to the PSTN. Subscriber
line is synonymous with loop or local loop.

VoicePath™ API II
(VP-API-II)

An Application Program Interface that provides access to Zarlink
Semiconductor’s VTDs via the HBI or MPI. It is the primary component of the
VoicePath Software Development Kit (VP SDK).

VoicePath™ SDK
(VP-SDK)

A collection of tools to assist in the development of software for Zarlink
Semiconductor devices. The VP-API-II and ProfileWizard are components of the
VP SDK.

VCP Voice Control Processor. For a complete list of VCP products please see
Supported Hardware Configurations, on page 5.

VPP Voice Packet Processor. For a complete list of VPP products, please see
Supported Hardware Configurations, on page 5.

VTD Voice Termination Device. A VTD can be a SLAC device, VCP or VPP. Note that
SLAC devices are controlled by a VCP but are contained within VPPs.

CHAPTER

131

B FUNCTION INDEX

Table B–1 lists all VP-API-II functions, along with their input types, return type, applicable devices,
and applicable termination types. Termination type "All" means either all termination types
supported by the applicable devices, or the termination type is not relevant to the function. The page
number of the complete function description is included for each function in Table B–1. If the page
number for any function is empty, this means that this document was created for a device that does
not support that function.

132

Table B–1 VoicePath™ API II Functions Summary

Function Name Arguments Return Type Devices Terminations Page

System Configuration Functions

VpMakeDeviceObject
VpDeviceType deviceType,
VpDeviceIdType deviceId,
VpDevCtxType *pDevCtx, void *pDevObj

VpStatusType All All 23

VpMakeLineObject
VpTermType termType, uint8 channelId,
VpLineCtxType *pLineCtx, void *pLineObj,
VpDevCtxType *pDevCtx

VpStatusType All All 24

VpMakeDeviceCtx
VpDeviceType deviceType,
VpDevCtxType *pDevCtx, void *pDevObj

VpStatusType All All 26

VpMakeLineCtx
VpLineCtxType *pLineCtx, void *pLineObj,
VpDevCtxType *pDevCtx

VpStatusType All All 27

VpFreeLineCtx VpLineCtxType *pLineCtx VpStatusType All All 28

VpGetDeviceInfo VpDeviceInfoType *pDeviceInfo VpStatusType All All 29

VpGetLineInfo VpLineInfoType *pLineInfo VpStatusType All All 30

VpMapLineId
VpLineCtxType *pLineCtx, VpLineIdType
lineId

VpStatusType All All 31

Initialization Functions

VpBootLoad

VpDevCtxType *pDevCtx,
VpBootStateType state,
VpImagePtrType pImageBuffer,
uint32 bufferSize,
VpScratchMemType *pScratchMem,
VpBootModeType validation

VpStatusType VCP, VPP All 70

VpInitDevice

VpDevCtxType *pDevCtx,
VpProfilePtrType pDevProfile,
VpProfilePtrType pAcProfile,
VpProfilePtrType pDcProfile,
VpProfilePtrType pRingProfile,
VpProfilePtrType pFxoAcProfile,
VpProfilePtrType pFxoCfgProfile

VpStatusType All All 71

133

VpInitLine

VpLineCtxType *pLineCtx,
VpProfilePtrType pAcProfile,
VpProfilePtrType pDcFeedOrFxoCfgProfile,
VpProfilePtrType pRingProfile

VpStatusType All All 73

VpConfigLine

VpLineCtxType *pLineCtx,
VpProfilePtrType pAcProfile,
VpProfilePtrType pDcFeedOrFxoCfgProfile,
VpProfilePtrType pRingProfile

VpStatusType All All 74

VpCalCodec
VpLineCtxType *pLineCtx,
VpDeviceCalType mode

VpStatusType
CSLAC-790, VCP-

790 FXS 75

VpCalLine VpLineCtxType *pLineCtx VpStatusType VCP-790 FXS 76

VpInitRing
VpLineCtxType *pLineCtx,
VpProfilePtrType pCadProfile,
VpProfilePtrType pCidProfile

VpStatusType All FXS 77

VpInitCid
VpLineCtxType *pLineCtx, uint8 length,
uint8p pCidData

VpStatusType All FXS 78

VpInitMeter
VpLineCtxType *pLineCtx,
VpProfilePtrType pMeterProfile

VpStatusType All FXS 79

VpInitProfile
VpDevCtxType *pDevCtx, VpProfileType type,
VpProfilePtrType pProfileIndex,
VpProfilePtrType pProfile

VpStatusType All All 80

VpSoftReset VpDevCtxType *pDevCtx VpStatusType VCP, VPP All 81

VpSetBatteries

VpLineCtxType *pLineCtx,

VpBatteryModeType battMode,

VpBatteryValuesType *pBatt

VpStatusType VCP All 82

Control Functions

VpSetLineState
VpLineCtxType *pLineCtx,
VpLineStateType state

VpStatusType All All 84

VpSetLineTone

VpLineCtxType *pLineCtx,
VpProfilePtrType pToneProfile,
VpProfilePtrType pCadProfile,
VpDtmfToneGenType *pDtmfControl

VpStatusType All All 86

Table B–1 VoicePath™ API II Functions Summary(Continued)

Function Name Arguments Return Type Devices Terminations Page

134

VpSetRelayState
VpLineCtxType *pLineCtx,
VpRelayControlType rState

VpStatusType
CSLAC, VCP-790,

VPP All 87

VpSetRelGain
VpLineCtxType *pLineCtx, uint16 txLevel,
uint16 rxLevel, uint16 handle

VpStatusType
VCP, CSLAC-880,

CSLAC-890 All 88

VpSendSignal
VpLineCtxType *pLineCtx,
VpSendSignalType signalType,
void *pSignalData

VpStatusType
CSLAC-880,

CSLAC-890, VCP-
880

All 89

VpSendCid
VpLineCtxType *pLineCtx, uint8 length,
VpProfilePtrType pCidProfile,
uint8p pCidData

VpStatusType All FXS 92

VpContinueCid
VpLineCtxType *pLineCtx, uint8 length,
uint8p pCidData

VpStatusType CSLAC, VCP FXS 93

VpDtmfDigitDetected
VpLineCtxType *pLineCtx,
VpDigitType digit, VpDigitSenseType sense

VpStatusType CSLAC FXS

VpStartMeter
VpLineCtxType *pLineCtx, uint16 onTime,
uint16 offTime, uint16 numMeters

VpStatusType All FXS 94

VpSetOption
VpLineCtxType *pLineCtx,
VpDevCtxType *pDevCtx,
VpOptionIdType option, void *pValue

VpStatusType All All 95

VpToneDetectionControl
VpLineCtxType *pLineCtx,
VpToneDetectionType *pToneDetection

VpStatusType VPP All

VpDeviceIoAccess
VpDevCtxType *pDevCtx,
VpDeviceIoAccessDataType *pDeviceIoData

VpStatusType All All 96

VpVirtualISR VpDevCtxType *pDevCtx VpStatusType CSLAC All

VpApiTick VpDevCtxType *pDevCtx, bool *pEventStatus VpStatusType CSLAC All

VpSelfTest VpLineCtxType *pLineCtx VpStatusType VCP All 97

VpFillTestBuf
VpLineCtxType *pLineCtx, uint16 length,
VpVectorPtrType pData

VpStatusType
VCP-790-BT,
VCP-790-AT All

VpLowLevelCmd
VpLineCtxType *pLineCtx, uint8 *pCmdData,
uint8 len, uint16 handle

VpStatusType All All 98

Table B–1 VoicePath™ API II Functions Summary(Continued)

Function Name Arguments Return Type Devices Terminations Page

135

VpSetBFilter

VpLineCtxType *pLineCtx,

VpBFilterModeType bFiltMode,

VpProfilePtrType pAcProfile

VpStatusType All All 99

VpLineIoAccess
VpLineCtxType *pLineCtx,
VpLineIoAccessType *pLineIoAccess, uint16
handle

VpStatusType VCP2 All 100

VpDeviceIoAccessExt
VpDevCtxType *pDevCtx,
VpDeviceIoAccessExtType *pDeviceIoAccess

VpStatusType VCP2 All 101

Status and Query Functions

VpGetEvent VpDevCtxType *pDevCtx, VpEventType *pEvent bool All All 104

VpGetLineStatus
VpLineCtxType *pLineCtx,
VpInputType input, bool *pStatus

VpStatusType All All 106

VpGetDeviceStatus
VpDevCtxType *pDevCtx, VpInputType input,
uint32 *pDeviceStatus

VpStatusType All All 107

VpGetLoopCond VpLineCtxType *pLineCtx, uint16 handle VpStatusType
CSLAC-790, VCP,

VPP FXS 108

VpGetOption
VpLineCtxType *pLineCtx,
VpDevCtxType *pDevCtx,
VpOptionIdType option, uint16 handle

VpStatusType All All 109

VpGetLineState
VpLineCtxType *pLineCtx,
VpLineStateType *pCurrentState

VpStatusType All All 110

VpFlushEvents VpDevCtxType *pDevCtx VpStatusType All All 111

VpGetResults VpEventType *pEvent, void *pResults VpStatusType All All 112

VpClearResults VpDevCtxType *pDevCtx VpStatusType All All 113

VpCodeCheckSum VpDevCtxType *pDevCtx, uint16 handle VpStatusType VCP, VPP All 114

VpGetDeviceStatusExt
VpDevCtxType *pDevCtx, VpDeviceStatusType
*pDeviceStatus

VpStatusType VCP2 All 114

Table B–1 VoicePath™ API II Functions Summary(Continued)

Function Name Arguments Return Type Devices Terminations Page

136

Packet Functions

VpControlVoiceStream
VpLineCtxType *pLineCtx, uint8 streamId,
VpVSConfControlType streamControl,
VpVSConfModeType confMode

VpStatusType VPP All

VpReadUpStreamPacket
VpLineCtxType *pLineCtx,
VpPktDataPtrType pPacketData,
uint8 streamId

VpStatusType VPP All

VpWriteDownStreamPacket
VpLineCtxType *pLineCtx,
VpPktDataPtrType pPacketData,
uint8 streamId

VpStatusType VPP All

VpGetTimeStamp VpDevCtxType *pDevCtx, uint16 *pTimeStamp VpStatusType VPP All

VpReadPacketStatistics VpLineCtxType *pLineCtx, uint16 handle VpStatusType VPP All

Testing Functions

VpTestLine
VpLineCtxType *pLineCtx,
VpTestIdType test, const void *pArgs,
uint16 handle

VpStatusType
VCP-790-BT,

VCP-790-AT, VPP FXS

System Services Layer Functions

VpSysEnterCritical
VpDeviceIdType deviceId,
VpCriticalSecType criticalSecTyp

uint8 All All 119

VpSysExitCritical
VpDeviceIdType deviceId,
VpCriticalSecType criticalSecType

uint8 All All 120

VpSysWait uint8 time void CSLAC All

VpSysDisableInt VpDeviceIdType deviceId void CSLAC All

VpSysEnableInt VpDeviceIdType deviceId void CSLAC All

VpSysTestInt VpDeviceIdType deviceId bool CSLAC All

VpSysDtmfDetEnable VpDeviceIdType deviceId void CSLAC FXS

VpSysDtmfDetDisable VpDeviceIdType deviceId void CSLAC FXS

Hardware Abstraction Layer (HAL) Functions

Table B–1 VoicePath™ API II Functions Summary(Continued)

Function Name Arguments Return Type Devices Terminations Page

137

VpMpiCmd
VpDeviceIdType deviceId, uint8 ecVal,
uint8 cmd, uint8 cmdLen, uint8 *dataPtr

void CSLAC All

VpMpiReset
VpDeviceIdType deviceId,
VpDeviceType deviceType

void CSLAC All

VpHalHbiInit VpDeviceIdType deviceId bool VCP, VPP All 122

VpHalHbiCmd VpDeviceIdType deviceId, uint16 cmd bool VCP, VPP All 123

VpHalHbiWrite
VpDeviceIdType deviceId, uint16 cmd,
uint8 numwords, uint16p pData

bool VCP, VPP All 124

VpHalHbiWrite8
VpDeviceIdType deviceId, uint16 cmd,
uint8 numwords, uint8p pData

bool VPP All

VpHalHbiRead
VpDeviceIdType deviceId, uint16 cmd,
uint8 numwords, uint16p pData

bool VCP, VPP All 125

VpHalHbiRead8
VpDeviceIdType deviceId, uint16 cmd,
uint8 numwords, uint8p pData

bool VPP All

VpHalHbiBootWr
VpDeviceIdType deviceId, uint8 numwords,
VpImagePtrType pData

bool VCP, VPP All 126

Table B–1 VoicePath™ API II Functions Summary(Continued)

Function Name Arguments Return Type Devices Terminations Page

138

V P A P I - I I U S E R ’ S G U I D E

CHAPTER

139

C RELAY CONFIGURATIONS

This appendix describes relay configurations for various line termination types. The relay states
described in this section could be exercised using the function VpSetRelayState(), on page 87. Only
those relay states that are described in this section are valid relay states for a given line termination
types.

Figure 3–1 Relay States, VP_TERM_FXS_GENERIC Termination

Figure 3–2 Relay States, VP_TERM_FXS_ISOLATE Termination

Note:
Even though the VP_TERM_FXS_ISOLATE line termination type has a drive isolate relay, this relay cannot be
controlled through the VpSetRelayState() function. This relay is automatically controlled by the
VpSetLineState() function. This limitation prevents damage to the device due to improper combination of
the relay and line states which could result in very high voltages being generated from devices that have
switcher circuitry.

Figure 3–3 Relay States, VP_TERM_FXS_TITO_TL_R Termination

VP_RELAY_NORMAL

VP_RELAY_BRIDGED_TEST

SLIC AD/BD SLIC SA/SB Test Load Tip/RingRelay State Bus

VP_RELAY_TALK

VP_RELAY_NORMAL

SLIC AD/BD SLIC SA/SB Test Load Tip/RingRelay State Bus

VP_RELAY_BRIDGED_TEST

VP_RELAY_NORMAL (non-ringing)

VP_RELAY_NORMAL (ringing)

VP_RELAY_TESTOUT

VP_RELAY_TALK

VP_RELAY_RINGING

VP_RELAY_BRIDGED_TEST

VP_RELAY_SPLIT_TEST

VP_RELAY_RINGING_TEST

VP_RELAY_DISCONNECT

SLIC AD/BD SLIC SA/SB Ext. Ringing Test In Tip/Ring Test OutRelay State Bus Test Load

140

V P A P I - I I U S E R ’ S G U I D E

Figure 3–4 Relay States, VP_TERM_FXS_75181 Termination

Figure 3–5 Relay States, VP_TERM_FXS_75282 Termination

Figure 3–6 Relay States, VP_TERM_FXS_RR Termination

Figure 3–7 Relay States, VP_TERM_FXS_TO_TL Termination

VP_RELAY_NORMAL (non-ringing)

VP_RELAY_RINGING

SLIC AD/BD SLIC SA/SB Ringing Tip/RingRelay State Bus

VP_RELAY_TALK

VP_RELAY_NORMAL (ringing)

VP_RELAY_NORMAL (non-ringing)

VP_RELAY_NORMAL (ringing)

VP_RELAY_RESET

VP_RELAY_TESTOUT

VP_RELAY_TALK

VP_RELAY_RINGING

VP_RELAY_TEST

VP_RELAY_BRIDGED_TEST

VP_RELAY_SPLIT_TEST

VP_RELAY_RINGING_TEST

VP_RELAY_RINGING_NOLOAD

VP_RELAY_DISCONNECT

SLIC AD/BD SLIC SA/SB Ext. Ringing Test In Tip/Ring Test OutRelay State Bus

VP_RELAY_NORMAL (non-ringing)

VP_RELAY_RINGING

VP_RELAY_BRIDGED_TEST

VP_RELAY_RESET

SLIC AD/BD SLIC SA/SB Ringing Tip/RingRelay State Bus

VP_RELAY_TALK

VP_RELAY_NORMAL (ringing)

Test Load

VP_RELAY_NORMAL

VP_RELAY_TESTOUT

VP_RELAY_BRIDGED_TEST

VP_RELAY_SPLIT_TEST

SLIC AD/BD SLIC SA/SB Test Load Tip/Ring Test OutRelay State Bus

VP_RELAY_DISCONNECT

VP_RELAY_TALK

CHAPTER

141

D REVISION HISTORY

REV B1 – 12/19/2005
• Added new line termination types. Updated sections of the document that deal with termination

types. Also, changed the name of the previously un-documented VP_FXS_TERM_RDT to
VP_FXS_TERM_RR.

• Updated VpInitDevice() function to indicate the end relay states for all the line termination
types.

• Added a new appendix to illustrate all the applicable relay states for various line termination
types. Also updated VpSetRelayState() function.

• Added metering cadence event to indicate the number of metering pulses that have been sent.
• Clarified the smooth polarity reversal scenarios in the VP_OPTION_ID_LINE_STATE option.
• Removed references to code in VpApiTick() regarding virtual register data stored in the API-II,

and in regard to nested critical sections. Notes previously described that critical section nesting
is not currently used in the API-II. This is not the case and has been removed from the docu-
ment.

• Updated section regarding interrupt modes for CSLAC family. Maximum number of interrupts
is set by Device Profile, previously documented as set by MAX_INTERRUPT (used in VP-API-
II).

• Added VpMakeDeviceCtx() and VpMakeLineCtx() as functions that can return error code
VP_STATUS_ERR_VTD_CODE in table 1.5.

REV C1 – 3/31/2006
• Added a new function to the VP-API-II. This function enables the applications to assign imple-

mentation specific system wide line identifier to a line. Please See VpMapLineId(), on
page 31..

REV D1 - 08/02/2006
• Added new Process type event VP_LINE_EVID_TONE_CAD indicating completion of a Tone

Cadence.
• Provided clarification of DTMF Tone Generation using parameter pDtmfControl in function

VpSetLineTone().

REV D2 - 10/02/2006
• Added VP_TERM_FXO_DISC to termination types.
• Added System Configuration information for VP580 support.

REV D3 - 12/19/2006
• Updated VpSetLineTone() to indicate event generated.
• Provided clarification throughout with no API-II interface change.

REV E1 - 10/3/2007
• Added new functions VpSetBFilter() and VpSetBatteries() with documentation for use.
• Added new options VP_DEVICE_OPTION_ID_DEV_IO_CFG and

VP_OPTION_ID_LINE_IO_CFG.
• Updated the VP_OPTION_ID_DTMF_MODE documentation to reflect the new struct member

142

V P A P I - I I U S E R ’ S G U I D E

(dtmfDetectionEnabled[]) for supporting more than 32 lines.
• Added new API functions: VpLineIoAccess(), VpDeviceIoAccess(), and VpGetDeviceStatu-

sExt().
• Added new events: VP_LINE_EVID_LINE_IO_RD_CMP, and VP_LINE_EVID_IO_WR_CMP.
• Updated description of VP_DEV_EVID_IO_ACCESS_CMP to discuss VpDeviceIoAccess-

Ext().
• Added new option VP_OPTION_ID_DTMF_SPEC and content to describe use.
• Added new device type VP_DEV_VCP2_SERIES and updated configuration options.

REV E2 - 1/4/2007
• Removed Revision History more than 2 years old.
• Added new events: VP_LINE_EVID_EXTD_FLASH
• Added new parameter onHookMin to VpOptionPulseType.
• Added VP_SEND_SIG_TIP_OPEN_PULSE to VpSendSignalType.
• Added CSLAC-890 device to CSLAC family of API-II.

	Table of Contents
	Introduction
	1.1 About this User’s Guide
	1.1.1 Chapter Overview
	1.1.2 Frequently Used Terms
	1.1.3 Documentation Conventions

	1.2 VP-API-II Overview
	1.2.1 Features
	1.2.1.1 Profiles
	1.2.1.2 Options

	1.2.2 Architecture
	1.2.2.1 VP-API-II
	1.2.2.2 Customer Application
	1.2.2.3 Operating System
	1.2.2.4 Hardware Abstraction Layer
	1.2.2.5 System Services Layer

	1.2.3 Supported Hardware Configurations
	1.2.3.1 Voice Control Processor (VCP and VCP2)

	1.2.4 VP-API-II Function Summary
	1.2.4.1 System Configuration
	1.2.4.2 Initialization
	1.2.4.3 Control
	1.2.4.4 Query/Status
	1.2.4.5 System Support
	1.2.4.6 Hardware Abstraction Layer

	1.2.5 Basic VP-API-II Data Types
	1.2.6 VP-API-II Function Return Type

	1.3 API-II Source Version Number
	1.4 Technical Support

	Profiles
	2.1 Overview
	2.2 Profile Types
	2.3 Profile Tables
	2.4 Profile Functions

	System Configuration Functions
	3.1 Overview
	3.2 Objects and Contexts
	3.3 Multi-Tasking Applications
	3.3.1 Multi-Tasking with Protected Memory

	3.4 Function Descriptions
	3.4.1 VpMakeDeviceObject()
	3.4.2 VpMakeLineObject()
	3.4.3 VpMakeDeviceCtx()
	3.4.4 VpMakeLineCtx()
	3.4.5 VpFreeLineCtx()
	3.4.6 VpGetDeviceInfo()
	3.4.7 VpGetLineInfo()
	3.4.8 VpMapLineId()

	Options
	4.1 Overview
	4.2 Option Summary
	4.3 Option Descriptions
	4.3.1 VP_DEVICE_OPTION_ID_PULSE
	4.3.2 VP_DEVICE_OPTION_ID_CRITICAL_FLT
	4.3.3 VP_OPTION_ID_ZERO_CROSS
	4.3.4 VP_DEVICE_OPTION_ID_RAMP2STBY
	4.3.5 VP_OPTION_ID_PULSE_MODE
	4.3.6 VP_OPTION_ID_TIMESLOT
	4.3.7 VP_OPTION_ID_CODEC
	4.3.8 VP_OPTION_ID_PCM_HWY
	4.3.9 VP_OPTION_ID_LOOPBACK
	4.3.10 VP_OPTION_ID_LINE_STATE
	4.3.11 VP_OPTION_ID_EVENT_MASK
	4.3.12 VP_OPTION_ID_RING_CNTRL
	4.3.13 VP_OPTION_ID_DTMF_MODE
	4.3.14 VP_DEVICE_OPTION_ID_DEVICE_IO
	4.3.15 VP_OPTION_ID_PCM_TXRX_CNTRL
	4.3.16 VP_DEVICE_OPTION_ID_DEV_IO_CFG
	4.3.17 VP_OPTION_ID_LINE_IO_CFG
	4.3.18 VP_OPTION_ID_DTMF_SPEC

	Events
	5.1 Overview
	5.2 Event Summary
	5.3 Fault Events
	5.3.1 VP_DEV_EVID_BAT_FLT
	5.3.2 VP_DEV_EVID_CLK_FLT
	5.3.3 VP_LINE_EVID_THERM_FLT
	5.3.4 VP_LINE_EVID_DC_FLT
	5.3.5 VP_LINE_EVID_AC_FLT
	5.3.6 VP_DEV_EVID_EVQ_OFL_FLT
	5.3.7 VP_DEV_EVID_WDT_FLT

	5.4 Signaling Events
	5.4.1 VP_LINE_EVID_HOOK_OFF
	5.4.2 VP_LINE_EVID_HOOK_ON
	5.4.3 VP_LINE_EVID_GKEY_DET
	5.4.4 VP_LINE_EVID_GKEY_REL
	5.4.5 VP_LINE_EVID_FLASH
	5.4.6 VP_LINE_EVID_STARTPULSE
	5.4.7 VP_LINE_EVID_EXTD_FLASH
	5.4.8 VP_LINE_EVID_DTMF_DIG
	5.4.9 VP_LINE_EVID_PULSE_DIG
	5.4.10 VP_LINE_EVID_MTONE
	5.4.11 VP_DEV_EVID_TS_ROLLOVER

	5.5 Response Events
	5.5.1 VP_DEV_EVID_BOOT_CMP
	5.5.2 VP_LINE_EVID_LLCMD_TX_CMP
	5.5.3 VP_LINE_EVID_LLCMD_RX_CMP
	5.5.4 VP_DEV_EVID_DNSTR_MBOX
	5.5.5 VP_LINE_EVID_RD_OPTION
	5.5.6 VP_LINE_EVID_RD_LOOP
	5.5.7 VP_EVID_CAL_CMP
	5.5.8 VP_EVID_CAL_BUSY
	5.5.9 VP_LINE_EVID_GAIN_CMP
	5.5.10 VP_DEV_EVID_DEV_INIT_CMP
	5.5.11 VP_LINE_EVID_LINE_INIT_CMP
	5.5.12 VP_DEV_EVID_IO_ACCESS_CMP
	5.5.13 VP_LINE_EVID_LINE_IO_RD_CMP
	5.5.14 VP_LINE_EVID_LINE_IO_WR_CMP

	5.6 Test Events
	5.6.1 VP_DEV_EVID_STEST_CMP
	5.6.2 VP_DEV_EVID_CHKSUM

	5.7 Process Events
	5.7.1 VP_LINE_EVID_MTR_CMP
	5.7.2 VP_LINE_EVID_MTR_ABORT
	5.7.3 VP_LINE_EVID_MTR_CAD
	5.7.4 VP_LINE_EVID_CID_DATA
	5.7.5 VP_LINE_EVID_RING_CAD
	5.7.6 VP_LINE_EVID_SIGNAL_CMP
	5.7.7 VP_LINE_EVID_TONE_CAD

	Initialization Functions
	6.1 Overview
	6.2 Function Descriptions
	6.2.1 VpBootLoad()
	6.2.2 VpInitDevice()
	6.2.3 VpInitLine()
	6.2.4 VpConfigLine()
	6.2.5 VpCalCodec()
	6.2.6 VpCalLine()
	6.2.7 VpInitRing()
	6.2.8 VpInitCid()
	6.2.9 VpInitMeter()
	6.2.10 VpInitProfile()
	6.2.11 VpSoftReset()
	6.2.12 VpSetBatteries()

	Control Functions
	7.1 Overview
	7.2 Function Descriptions
	7.2.1 VpSetLineState()
	7.2.2 VpSetLineTone()
	7.2.3 VpSetRelayState()
	7.2.4 VpSetRelGain()
	7.2.5 VpSendSignal()
	7.2.6 VpSendCid()
	7.2.7 VpContinueCid()
	7.2.8 VpStartMeter()
	7.2.9 VpSetOption()
	7.2.10 VpDeviceIoAccess()
	7.2.11 VpSelfTest()
	7.2.12 VpLowLevelCmd()
	7.2.13 VpSetBFilter()
	7.2.14 VpLineIoAccess()
	7.2.15 VpDeviceIoAccessExt()

	Status and Query Functions
	8.1 Overview
	8.2 Function Descriptions
	8.2.1 VpGetEvent()
	8.2.2 VpGetLineStatus()
	8.2.3 VpGetDeviceStatus()
	8.2.4 VpGetLoopCond()
	8.2.5 VpGetOption()
	8.2.6 VpGetLineState()
	8.2.7 VpFlushEvents()
	8.2.8 VpGetResults()
	8.2.9 VpClearResults()
	8.2.10 VpCodeCheckSum()
	8.2.11 VpGetDeviceStatusExt()

	System Services
	9.1 Overview
	9.2 VP-API-II Reentrency
	9.3 Function Descriptions
	9.3.1 VpSysEnterCritical()
	9.3.2 VpSysExitCritical()

	Hardware Abstraction Layer
	10.1 Overview
	10.2 Function Descriptions
	10.2.1 VpHalHbiInit()
	10.2.2 VpHalHbiCmd()
	10.2.3 VpHalHbiWrite()
	10.2.4 VpHalHbiRead()
	10.2.5 VpHalHbiBootWr()

	Interrupt Handling
	11.1 Overview
	11.2 Handling Interrupts from VCP and VPP Devices

	Glossary
	Function Index
	Relay Configurations
	Revision History

