
Wired Communications—Confidential

API-II
An Application Perspective

“Voice made easy!”

Wired Communications—ConfidentialP.2

Introduction

– The purpose of this presentation is to provide a summary of the
API-II from the perspective of the Application Developer.

– After this presentation you will:
– Have an understanding of API-II and be able to create a simple

Voice application using API-II.
– Understand how API-II can be used in a wide range of Application

architectures.

– This material is intended for:
– Software Engineers designing applications using API-II
– Anyone interested in understanding API-II

– It is assumed that the reader has a basic understanding of the C
language.

Wired Communications—ConfidentialP.3

Agenda

API-II Main Concepts
– Goals of API-II: Simplify Voice, Architecture Independent, OS

Independent
– Contexts and Objects
– Profiles and Options
– Hardware Abstraction Layer (HAL) and System Services

Application Decisions
– Memory Management
– Device/Line Control and Query
– Multi or Single Process

Device Family Differences
Creating a QuickStart Application

Wired Communications—ConfidentialP.4

Goals of API-II: Simplify Voice

Abstract device and line configuration and control for voice
applications:

– Device and Line Configuration
– PCLK/MCLK Interface
– AC, DC, Ringing Parameters

– Ring Entry/Exit Handling
– Switch Hook Debounce for Ringing state changes
– Automatic Ring Exit State on Switch Hook

Add commonly needed functions to simplify the application:
– Caller ID:

– Type I requires a function call to setup the Ringing Cadence and Caller ID
Cadence that meets the CID requirements, then another function call to
“load” the CID message data into the API-II.

– Type II requires a single function call to setup the Caller ID Cadence that
meets the CID requirements and loads the CID message data.

– Dial Pulse/Flash Hook Detection and Generation
– Ringing and Tone Cadencing

Wired Communications—ConfidentialP.5

Goals of API-II: Architecture Independent

API-II contains no Memory
– All memory required by the API-II is provided by the Application and can be

dynamically or statically allocated.
– Note: If the application removes the memory for a line (line context), it must call the

function VpFreeLineCtx() to prevent the API-II from accessing it.

API-II is re-enterant
– Re-enterency is the ability to allow multiple applications to call the same function.
– The API-II will detect re-enterant conditions and will either handle the requested

operation or throw an error.
– Conditions that cause a re-enterency error:

– Hardware Access to the same device by two or more applications at the same time.
– Code critical sections where shared data is being modified.
– Performing multiple operations on the same line at the same time.

Wired Communications—ConfidentialP.6

Goals of API-II: Non-OS specific

API-II code does not rely on any user or OS specific functionality.
Only the System Services or HAL layers that are required by the
API-II may be OS specific.

– System Services are those functions common to many applications in a
given software architecture. The API-II install provides examples for
Linux 2.4.

– HAL (Hardware Abstraction Layer) is an implementation of the hardware
access for the customer specific platform. No assumptions are made by
the API-II regarding the HAL layer. The API-II install provides examples
for the UVB.

The API-II has been tested in a non-OS environment, in Linux User
space, and deployed as a Linux Kernel driver and in VxWorks.

– See “API-II to Linux Porting Guide” (included with the API-II install) for
recommendations regarding the use of the API-II in a Linux Kernel.

Wired Communications—ConfidentialP.7

Contexts and Objects

Contexts and Objects are fundamental to API-II:
– (Device and Line) Contexts: A generic type that is used to access a

specific device or line object. These are called VpDevCtxType and
VpLineCtxType respectively.

– (Device and Line) Objects: A specific type that contains data for a device
or line. Some examples as they are called in the API-II:

– VP880 Series - Vp880DeviceObjectType, Vp880LineObjectType
– VP790 Series – Vp790DeviceObjectType, Vp790LineObjectType

API-II functions accept pointers to VpDevCtxType and
VpLineCtxType for the following reasons:

– The application never needs to change to support multiple devices since
the type passed is generic (as opposed to passing the objects).

– The API-II accesses devices and lines associated with one another
through the contexts passed (required for multi-threaded applications).

– The API-II modifies data in the objects, which is pointed to by the
contexts.

Wired Communications—ConfidentialP.8

Contexts and Objects cont..

The application creates all contexts and objects but passes only
the contexts into the API-II functions except …

– .. in special API-II functions when a context and object are linked:
– VpMakeDeviceObject() - Links a device context to a device object
– VpMakeLineObject() – Links a line context to a line object

Since contexts are generic and objects are specific, then each
device/line can only have one object associated with it and must be
shared among all applications accessing it, but each application
can have it’s own context for the same device/line.
– The object data contains specific information regarding a

device or line “at that time” and therefore must be common.
– The context only provides a (generic) access to the object data.

A picture is used to clarify the relationship between
contexts, objects, and real devices/lines.

Wired Communications—ConfidentialP.9

How are Device/Line Contexts and Objects related to
real devices/lines?

Line Context Line Context

CSLAC,
DVP, or

VPP

FXS/FXO
Termination

FXS/FXO
Termination

FXS/FXO
Termination

FXS/FXO
Termination

Line Object 1 Line Object 1 Line Object 1 Line Object 1Device Object

One Device and
Line Object for
each Voice
Termination Device
and Line

Line Context Line Context

Device Object

Device Context

Line Context

Line Context

Line Context

Line Context

Many Device and Line
Contexts are possible
for each Device and
Line Object

Wired Communications—ConfidentialP.10

Contexts and Object cont..

Question:
– What if an application is written using a function (or parameter of a

function) that is supported by one device family (or line type) and not
another? For example: setting an FXO line type to Ringing.

Answer:
– The application may call every API-II function with every parameter

independent of the device/line type.
– If the operation cannot be supported, the API-II function will return an

error code. The specific error code will depend on the cause of the
error.

– If an error code is returned, no operation was performed on the specific
device/line and no event is generated.

Note: It is best write the application such that proper (or expected)
error codes are returned in all places of the application.

Wired Communications—ConfidentialP.11

Profiles and Options

Profiles: Generally, items in the API-II that an application will “set
and forget”.
Options: Generally, items that may change several times during
program execution.

– Note: The API-II requires at least the Device Profile. Otherwise, no
additional initialization can occur. The Device Profile contains basic
information used to enable device communication.

Other Profiles Normally used by API-II
– AC: AC filter coefficients designed to meet country specific

requirements.
– DC: Parameters affecting DC conditions on the line and loop

supervision.
– Ringing: Parameters of the Ringing signal (Amplitude, Frequency,

Offset, etc.)
– FXO: Line signaling detection parameters used on FXO lines.

Wired Communications—ConfidentialP.12

Profiles and Options cont..

Feature Specific Profiles: Profiles not required by a basic
application, but simplify the application when a function is required.

– Dialing
– DTMF and Dial Pulse parameters used on an FXO line type when the FXO

circuitry is dialing out.

– Tone
– Line level tones used for Call Progress (or test).

– Cadence (Tone and Ringing)
– Enables API-II automatic cadencing of Tones and Ringing on the line. Also

used with Caller ID Profile to sequence Ringing with Caller ID.

– Caller ID
– Combined FSK (or DTMF) parameters and line state control used for Caller ID.

– Test Parameters (Packet SLAC only supported)
– Allows customer optimization of line test execution and pass/fail criteria

applied to the results.

– Metering
– Defines Parameters used by the line when a Metering signal is generated.

Wired Communications—ConfidentialP.13

Profiles and Options cont..

Where are the profiles used?
– Profiles required by API-II are used in the functions required by a basic

API-II application:
– VpInitDevice()
– VpInitLine()
– VpConfigLine() (not required by the application)

– Profiles not required by a basic API-II application are used in feature
specific functions:

– VpInitCid()
– VpStartMetering()
– VpSendTone()

Wired Communications—ConfidentialP.14

Profiles and Options cont..

Options are used to set every other device or line configuration
parameter that is not set by Profiles. Every (reasonable) application
will use options.

– Note: If the options used by the application are only set once, then the
user may chose to modify “vp_api_cfg.h” with the application specific
settings. This file defines the default values used by the API-II.

Functions used to set and get options:
– VpSetOption() – Sets options for a device, a line, or for all lines

associated with a device. See the API-II Reference Manual for details.
– VpGetOption() – Retrieves option data for the device or line. Note that it is

not possible to retrieve a line option for all lines at the same time.

When retrieving options, the API-II will generate an event indicating
that the read option data is ready. The application needs to process
the event and call VpGetResults() to access the option data.

Wired Communications—ConfidentialP.15

Profiles and Options cont..

The list provides some of the device and line options used by API-II.
This list is not intended to be inclusive. The reader should refer to
the API-II Reference Manual for a complete list and details.

– (some) Device Specific Options:
– VP_DEVICE_OPTION_ID_PULSE /* Specify pulse & flash decode timings */
– VP_DEVICE_OPTION_ID_CRITICAL_FLT /* Specify action to take on a critical

fault */
– VP_DEVICE_OPTION_ID_RAMP2STBY /* Set Ramp time from Disconnect to

Standby */
– VP_DEVICE_OPTION_ID_DEVICE_IO /* Specify Device IO options */

– (some) Line Specific Options:
– VP_OPTION_ID_ZERO_CROSS /* Select zero-cross ring-entry/exit options */
– VP_OPTION_ID_PULSE_MODE /* Specifies pulse digit decode on or off. */
– VP_OPTION_ID_TIMESLOT /* Specify Transmit and Receive Timeslots*/
– VP_OPTION_ID_CODEC /* Specify PCM encoding */
– VP_OPTION_ID_LOOPBACK /* Specify loopback mode */
– VP_OPTION_ID_EVENT_MASK /* Specify the event mask (Enable/Disable

specific events) */
– VP_OPTION_ID_RING_CNTRL /* Specify the options for ringing control */

Wired Communications—ConfidentialP.16

HAL and System Services

HAL and System Services refers to a set of code specific to the
platform (hardware and software) that is required for the API-II to
work. The API-II install provides example code for the necessary
functions implemented for the UVB running Linux 2.4.

The specific HAL and System Services functions to be implemented
will depend on the API-II device family selected.

– Refer to the chapter titled “Hardware Abstraction Layer” for HAL
functions to be implemented.

– Refer to the chapter titled “System Services” for system services
functions to be implemented.

– Note: Some system services functions are provided to support multi-thread
architectures and may be empty if not required.

Wired Communications—ConfidentialP.17

Application Decisions

The purpose of this section is to explain how API-II fits into the
application based on a few of the application decisions that will be
made. Note that the API-II does not impose limitations on these
decision.

Common Application Decisions:
– Memory Management
– Device/Line Control and Query
– Multi or Single Process

The API-II functions are specified to behave a specific way
independent of the application architecture. However, some
behavior can only occur in specific architectures and require the
use of additional API-II functions.

Wired Communications—ConfidentialP.18

Application Decisions: Memory Management

API-II leaves all memory management decisions to the application. But
there are three models to consider:

– Model 1: Statically allocated, Single Process – All memory is allocated before
initialization (VpInitDevice()) and never removed during execution. API-II
functions are called strictly sequentially.

– Model 2: Dynamically allocated, Single Process – Memory is
allocated/deallocated during program execution. API-II functions are called
strictly sequentially.

– Model 3: Statically or Dynamically allocated, Multi-Process – Memory may be
allocated/deallocated during program execution. API-II functions may be called
while the same (or other) API-II functions are being executed.

Statically allocated, Single Process is the simplest model and will be
discussed first.

Wired Communications—ConfidentialP.19

Application Decisions: Memory Management cont...

Model 1: Statically allocated, Single Process
– API-II does not encounter a re-enterency -- requested function always executes.
– All contexts and objects used by the application (and API-II) always exist

The application will instantiate the contexts/objects as follows (assume one device
and two lines):

– VpDeviceCtxType devCtx;
– VpLineCtxType lineCtx[2]; /* Assume Two lines */
– VE880DeviceObjType ve880DevObj;
– VE880LineObjType ve880LineObj[2]; /* Match num of ctx */

The devices and lines are linked in API-II as follows (assume device ID = 0):
– VpMakeDeviceObject(&devCtx, &devObj[0], VP_VE880_SERIES, 0);
– VpMakeLineObject(&lineCtx[0], &lineObj[0], &devCtx, VP_LINE_FXS_GENERIC, 0);
– VpMakeLineObject(&lineCtx[1], &lineObj[1], &devCtx, VP_LINE_FXS_GENERIC, 1);

API-II Application Notes for Model 1: None. Call any API-II function after this point.

Wired Communications—ConfidentialP.20

Application Decisions: Memory Management cont...

Model 2: Dynamically allocated, Single Process
– API-II does not encounter a re-enterency -- requested function always

executes.
– Contexts and objects used by the application (and API-II) do not always

exist.

The application will allocate/deallocate memory for the
contexts/objects.

The devices and lines are linked in API-II the same way described
for Model 1 (discussed previously).

Wired Communications—ConfidentialP.21

Application Decisions: Memory Management cont...

API-II Application Notes for Model 2:
– If a device context or object is made invalid, the application must no longer call

API-II functions for that device or any API-II function for lines associated with
that device.

– If a line context or object is made invalid, the application needs to call
VpFreeLineCtx(). This tells the API-II that the line is no longer valid and should
not try to access it’s content.

– Prior to discarding a line context or object, it is recommended that the line state
first be set to Disconnect.

– If a device context or object is discarded, it is recommended that all lines
associated with that device first be set to Disconnect.

Wired Communications—ConfidentialP.22

Application Decisions: Memory Management cont...

Model 3: Statically or Dynamically allocated, Multi-Process
– Code execution controlled by a scheduling algorithm and therefore API-II

functions are stopped/started at random points. The same function may be
executing more than once.

– Contexts and objects used by the application (and API-II) may not always exist.

Only one process can instantiate the device/line objects, all other
processes will call a second set of special API-II functions:

– VpMakeDeviceCtx() – Links a device context to a device object without affecting
the device object contents.

– VpMakeLineCtx() – Links a line context to a line object without affecting the line
object contents.

Wired Communications—ConfidentialP.23

Application Decisions: Device/Line Control and Query

Fundamental difference between CSLAC and VCP (or VPP) devices
– CSLAC devices require a function call to VpApiTick() on a regular

interval and contain software generated events (interrupts), VCP/VPP
do not support VpApiTick() and will indicate events through a hardware
interrupt.

– VpApiTick() is also used to implement sequences internal to API-II (e.g.,
Ringing/Tone Cadence, Caller ID, Metering, etc.).

For all device families:
– VpGetEvent() is used to determine if an event is active and if an event

requires an additional result read.

An application designed to work for all device families should call
VpGetEvent() on a regular basis.

Wired Communications—ConfidentialP.24

Application Decisions: Multi or Single Process

There are no limitations in a single process application so they are
not discussed further
Multi-Process applications typically require re-enterancy.
Devices, Lines, and MPI/HBI Bus are limited resources, so some
rules are imposed by API-II.

– MPI/HBI access cannot be interrupted by other MPI/HBI access on the
same device.

– Two functions cannot execute simultaneously on the same line. The
second function called in this scenario will report an error.

– Device level operations that affect all lines cannot be performed if any
of it’s lines are in an active function.

– The API-II supports blocking operations by calling VpSysEnterCritical()
and VpSysExitCritical(). If the application is multi-threaded such that
the same device or lines may be accessed by more than one thread at
the same time, these functions must be implemented.

Wired Communications—ConfidentialP.25

Creating a QuickStart Application

QuickStart(s) – The “Hello World” of API-II
– A simple application implementing the minimal amount of code

necessary to perform a specific task using API-II.

Basic rules for a QuickStart application:
– Memory Management: Statically (global) allocated is simplest to use, so

QS uses this model.
– QS creates the VpDevCtx and VpLineCtx instances. It also creates

the device/line type specific object instances.
– Single Process: Assume no other process is running. So it will be

necessary to create the links to the device/line contexts and objects by
using functions:

– VpMakeDeviceObj()
– VpMakeLineObj()

– Event Handling: Can simply poll VpGetEvent() at regular intervals,
independent of the device family.

Wired Communications—ConfidentialP.26

Creating a QS Application cont...

We’ll implement a CSLAC (VE880 device type) QuickStart, so it is
necessary to call VpApiTick() at regular intervals.

– Note: VpApiTick() is typically called at 5mS intervals, so we’ll use that.
Other times are possible, with some functional limitations.

The application requires two ‘C’ functions:
– main()
– Some function to call VpApiTick() on a regular basis. We’ll use

apiTickHandler().
– The QuickStart example code provided with the API-II install is targeted for

the UVB running Linux 2.4. The lines that are specific to the UVB and Linux
will be omitted in this document.

Remember: VpApiTick() indicates if an event is active for CSLAC
device families. VCP/VPP devices indicate event activity via the
interrupt line.

Wired Communications—ConfidentialP.27

Creating a QS Application cont…

First, instantiate the device and line contexts and objects. The
contexts are a generic API-II type, the objects are device/line type
specific:

VpDevCtxType devCtx; /* Create generic device context */
VpLineCtxType lineCtx; /* Create generic line context */
Vp880DevObjType vp880Dev; /* Create VP880 device specific object */
Vp880LineObjType vp880Line; /* Create VP880 line specific object */

– Your application will refer to “devCtx, lineCtx, vp880Dev, and vp880Line”
Begin implementing main()

main()
{

int deviceId = 0; /* Define the CS to be associated with the device */
int chanId = 0; /* Specify the channel # associated with the device */

/* Remember: Must link the contexts to the objects */
VpMakeDeviceObject(VP_DEV_880_SERIES, deviceId, &devCtx, &vp880Dev);
VpMakeLineObject(VP_TERM_FXS_GENERIC, chanId, &lineCtx, &vp880Line, &devCtx);

/* From this point, the application will never refer to either “vp880Dev” or “vp880Line” again. All
API-II functions are performed with the contexts */

Wired Communications—ConfidentialP.28

Creating a QS Application cont…

Continue implementing main()
main()
{

…
/* Context and Object initialization */
…
/* Now it is necessary to initialize the device and lines. The Profile Wizard creates the

profiles data used in API-II. It is possible to initialize the lines without line specific
profiles, although not recommended and the performance is unpredictable. But no
additional API-II function will proceed without properly initializing the device, so a
device profile is required. */

/* For the purposes of this QS, well assume there is a device profile called
“DEV_PROF”, and the line AC, DC, and Ringing profiles are called “AC600”,
“DC25MA”, and “RING20HZ” respectively */

VpInitDevice(&devCtx, DEV_PROF, AC600, DC25MA, RING20HZ,
VP_PTABLE_NULL, VP_PTABLE_NULL);

/* The last two values “VP_PTABLE_NULL” are places for FXO line specific profiles.
Since this application is for an FXS line only, these entries are not needed. */

Wired Communications—ConfidentialP.29

Creating a QS Application cont…

Complete implementing main()
main()
{

…
/* Context and Object initialization */
…
/* Init Devices/Lines */
…

/* The details of implement the last section of main is platform specific. The application needs to call
VpApiTick() at the interval specified in the device profile (typically 5mS), and if VpApiTick()
indicates an active event, the application needs to process the event. */

/* Add some operation here that implements calling a function, called “apiTickHandler()” every 5mS */

/* Enter infinite loop so this application does not end. The apiTickHandler() is called every 5mS and is
considered the “main” processing loop of the application from this point*/

while(1);
return 0; /* This code is never reached, but it keeps the compiler from generating warnings/errors */

}

Wired Communications—ConfidentialP.30

Creating a QS Application cont…

Implementing “apiTickHandler()”
apiTickHandler()
{

/* Call VpApiTick() and determine if an event is pending */
bool isEventActive = FALSE; /* Declare and clear a boolean value to be used in VpApiTick() */
VpEventType eventData; /* If there is an event, we’ll need an instance of an event structure */

VpApiTick(&devCtx, &isEventActive); /* Make the 5mS call to VpApiTick() */

/* If there is an active event, call VpGetEvent to access event information */
if (isEventActive == TRUE) { /* If “TRUE”, an event is active. */

VpGetEvent(&devCtx, &eventData);
/* eventData is filled with information describing a device level event. */
if (eventData->pLineCtx != VP_NULL) { /* If the line context is valid, it is a line related event */

/* Add code here to process the event */
}

}
return 0;

}

Congratulations! You just wrote your first API-II Application.

Wired Communications—ConfidentialP.31

Summary

You now understand all of the major elements of the API-II:
– What is the difference between a “context” and “object”?

– Contexts point to objects and contain non-specific information.
Objects contain information that is specific to a particular device or
line.

– An application may have more than one context per device or line,
but it can only have one object for each device/line.

– How does the API-II access the object information if all functions are
passed the context?

– A link is made between a specific context and object at initialization
by calling the functions:

– VpMakeDevObject() – Links the device context to the device object and initializes
the object contents.

– VpMakeLineObject() – Links the line context to the line object and initializes the
object contents.

– How does the API-II indicate device or line events (activity)?
– CSLAC requires VpApiTick() to be called at regular intervals and

indicates if an event is active, the interrupt line on VCP/VPP will
indicate if an event is active.

– Call VpGetEvent() to access the event data.

Wired Communications—ConfidentialP.32

Summary cont…

You also understand the minimum code necessary to create a
QuickStart:

– Instantiate a device context and line context.
– Instantiate a device type specific device object and a line type specific

line object.
– Call the functions:

– VpMakeDevObject() and VpMakeLineObject() as needed.

– Initialize the device and lines:
– Call VpInitDevice() with a device profile and line specific AC, DC,

Ringing, and FXO (if applicable) profiles.

– If CSLAC, call VpApiTick() at regular intervals, otherwise..
– ..call VpGetEvent() to determine if an event is active.
– Perform device/line actions using API-II functions.

Wired Communications—ConfidentialP.33

Summary cont…

Lastly, you understand how API-II fits into any software architecture:
– API-II contains no memory, all memory managed by the application.
– API-II supports re-enterency, which is the ability to call a given function

more than one time without it exiting the first time.
– API-II supports multi-process applications by providing a mechanism to

allow two independent process access to the same device/line
information without interfering with each other.

– API-II can run either in an OS of the designers choice, or non-OS. It has
been proven in Linux, VxWorks, and non-OS.

Wired Communications—ConfidentialP.34

Where to Get More Information

‘C’ programming language references:
– “C – A Reference Manual”, 5th edition, Harbison and Steele Jr.
– “C Programming Language”, 2nd edition, Kernighan and Ritchie

API-II Reference Manual:
– Describes all of the functions and structures used by the API-II.

– Contact Zarlink Semiconductor for the updated version of
this document relevant to your API-II library type.

QuickStart examples:
– Source files included as part of the API-II Install

– The QuickStart applications are line module and “demo
function” specific. Therefore, refer to the QuickStart source
that most closely matches your application needs.

Zarlink Semiconductor Field Support for more information.

