
QuickStart Guide

Part Number: VCP2

Revision Number: A1

Issue Date: January 2008

VCP2 Package

VOICE SOLUTIONS

FEATURING

Document ID# 126938 Date: February 5, 2008
Rev: A Version: 1
Distribution: Per License Agreement

TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION . 1

1.1 Overview . 1
1.2 VCP2 Software Design Flow . 1
1.3 VCP2 Package Components at a Glance . 2

CHAPTER 2 FIRST STEPS . 5
CHAPTER 3 HBI MEMORY TEST . 7

3.1 Overview . 7
3.2 User Modifications . 7

3.2.1 Test Options . 7
3.2.2 Board Initialization . 7

3.3 Basic Program Operation . 7
3.4 Troubleshooting . 8

CHAPTER 4 MPI TEST. 9
4.1 Overview . 9
4.2 User Modifications . 9

4.2.1 Define Appropriate VoicePath Device Profile . 9
4.2.2 Modify brd_init.c . 9
4.2.3 Configure Precompiler Options . 9

4.2.3.1 app_des.h. 9
4.2.3.2 mpi_test_vcp.c . 9

4.3 Using the Program . 10
4.4 Basic Program Operation . 10

CHAPTER 5 QUICKSTART APPLICATION . 11
5.1 Overview . 11
5.2 User Modifications . 11

5.2.1 Translate the Boot Image . 11
5.2.2 Define Appropriate VoicePath Profiles . 11
5.2.3 Modify brd_init.c . 12
5.2.4 Configure app_des.h . 12
5.2.5 Configure framer_dummy.c (optional) . 12

5.3 Basic Program Operation . 12
5.4 Using the Program . 12
5.5 Help Options. 13

CHAPTER 6 BOOT IMAGE TOOLS. 15
6.1 Overview . 15
6.2 Ldr2c . 15
6.3 Deflater. 15

CHAPTER 7 TECHNICAL SUPPORT . 17
APPENDIX A SAMPLE OUTPUTS . 19

A.1 Sample Ouput for HBI Memory Test . 19
A.2 Sample Ouput for MPI Test . 20
A.3 Sample Ouput for QuickStart Application. 21

ii

V C P 2 P A C K A G E Q U I C K S T A R T G U I D E

CHAPTER

1

1 INTRODUCTION

1.1 OVERVIEW
The Voice Control Processor (VCP2) Package is a collection of software, tools, code examples, and
documents that use the Zarlink VCP2 chipsets to promote rapid application development. With the
VCP2 Package, little or no knowledge of the low-level control of Zarlink ICs is needed to fully utilize
the chipset. The VCP2 is designed to streamline POTS line card requirements, simplify
implementation and reduce customers' time to market. The VCP2 system reduces the complexity
and real-time constraints associated with call control. Detecting DTMF tones, sending caller ID
messages, and controlling line voltage characteristics are examples of the kind of call control tasks
the VCP2 can perform with minimal host interaction.

This Quick Start Guide provides an overview of the VCP2 system and how the Package is used to
implement a control system for the VCP2.

Note:
In this document, the VoicePathTM API-II may simply be referred to as VP-API-II.

1.2 VCP2 SOFTWARE DESIGN FLOW
The following diagram introduces the prominent elements of the VCP2 system architecture. It is
recommended the user read the VP-API-II Reference Guide introduction for more precise details on
these elements.

2

V C P 2 P A C K A G E Q U I C K S T A R T G U I D E

Figure 1–1 System Diagram

1.3 VCP2 PACKAGE COMPONENTS AT A GLANCE
The VCP2 Package contains tools, code, documentation, and examples for using the VCP2
chipset. The following is a list of components distributed in the VCP2 Package.

• VP-API-II (source and documentation)
• VCP2 Test Library (source and documentation) -- optional with purchase of BT, AT, or ATP

packages.
• VCP2 Software Data Sheet
• VCP2 Firmware Image
• VCP1 to VCP2 Conversion Guide
• Profile Wizard
• Signal Integrity Tools
• Boot Image Tools
• Quick Start Application
• HAL & SSL Examples

Customer Host

VoicePath API-II
S

ys
te

m
 S

er
vi

ce
s

La
ye

r

Hardware Abstraction Layer (HAL)

Customer Application or Zarlink
Quick Start Application

Voice Control
Processor

(VCP2)

Host Bus Interface (HBI)

Microprocessor
Interface (MPI)

S
LA

C
 (C

od
ec

) …

S
LA

C
 (C

od
ec

)

S
LA

C
 (C

od
ec

)

SLIC (Line Driver)

SLIC (Line Driver)

SLIC (Line Driver)

… … …

Tip/Ring

Tip/Ring

Tip/Ring

VP Test Library

3

V C P 2 P A C K A G E Q U I C K S T A R T G U I D E

To find more about these items and where they (and their documentation) can be located, refer to
Table 1 below. The pathnames found in the table use "xxx" to represent version numbers and
product strings that are subject to change.

Table 1–1 Common Components List

Component Description Documentation

VP-API-II

This C-language library provides a common,
consistent interface to Zarlink voice termination
devices. The API, which is executed on a host
processor, simplifies the task of communicating
with the VCP2.

Note:
The Hardware Abstraction Layer (HAL) and
System Services Layer (SSL) are integral to the
VP-API. These modules must be tailored to meet
the specific underlying platform.

Location: /vcp2_xxx/api_lib

VP-API-II Reference Guide -the
primary reference to consult
when developing VCP2
application software.
("/vcp2_xxx/documents")

VCP2 Firmware
Image

This firmware image must be loaded on the VCP2
through the VpBootLoad VP-API function each
time the VCP2 is powered-up. The image is
specific to the type of VCP2 package purchased.
The firmware image is also referred to as the boot
image.

Location: /vcp2_xxx /firmware/vcp2/
vcp2_xxx.hbi.

Compressed images are denoted by appending a
number indicating the compression window size,
followed by a z. For instance, "vcp2_123.hbi8z"

Release notes are included in
the same directory.
Refer to the VP-API Reference
Guide "VpBootLoad" section for
more information about boot
images.

Profile Wizard

Profile Wizard is a graphical WindowsTM
application to help developers create
configuration profiles used by the VCP2. Profiles
are loaded during normal operation to define
regional and design specific attributes such as
call progress tone frequencies, the resistance
threshold for detecting on-hook events, and MPI
bus clock speed.

Location: /vcp2_xxx/tools/pw_xxx.exe

The Profile Wizard provided in the VCP2 package
release is the latest version at the time of release.
Profile Wizard, however, will be updated
separately from the VCP2 package. The latest
version of Profile Wizard can be obtained from
the Zarlink web site at http://www.zarlink.com.

Profile Wizard on-line help
(internal to application)

4

V C P 2 P A C K A G E Q U I C K S T A R T G U I D E

Signal Integrity
Tools

Tools to test the HBI and MPI connections. HBI
Test - Use this tool to ensure correct operation of
the HAL functions for low-level communication
between the host and the VCP2. MPI Test - Use
this tool to test MPI signal integrity between the
VCP2 and the SLAC devices.

Location: /vcp2_xxx/tools/

Quick Start Guide
Chapter 3, on page 7
Chapter 4, on page 9

Boot Image Tools

The VCP2 Package includes Windows
command-line utilities to reformat the boot image.
They can be found in the "/tools" directory of the
product package.

ldr2c.exe - converts firmware images into a C
declaration format that can be statically compiled
into the host software application.
deflater.exe - compresses the VCP2 firmware
image into a smaller image which can be
decompressed at runtime by the VpBootLoad()
function.

Location: /vcp2_xxx/tools/

Quick Start Guide
Chapter 6, on page 15

Quick Start
Application

This source code may be compiled to create an
application that demonstrates functional aspects
of the VP-API-II.

Location: /vcp2_xxx/apps/qs_xxx

Quick Start Guide
Chapter 5, on page 11

HAL & SSL
Examples

These C language samples of Hardware
Abstraction Layer and System Services Layer
implementations provide examples of the
functions the user must implement for their
architecture. Extensively commented.

Location: /vcp2_xxx/arch

Note:
There are several samples of the HAL and
System Services Layer. User should choose the
one that is most appropriate for their application
when starting development of a VCP2
application.

VP-API-II Software Reference
Guide

Table 1–1 Common Components List

Component Description Documentation

CHAPTER

5

2 FIRST STEPS

There is a natural sequence to early VCP2 system development to ensure quick and proper system
operation. The first steps in bringing up a new VCP2 design are shown in the following list and
diagram.

1. Configure the API. The API contains several pre-processor options. They need to be configured
in the API header file "vp_api_cfg.h" located in the "includes" directory of the VP-API source
tree. Comments in this file provide directions on how to select the appropriate chipset, default
options, and device context size.

2. Write/Modify the SSL and HAL modules. These thin layers provide functions allowing the API
to enforce mutual exclusion and to communicate with the VCP2 through the HBI bus. Examples
of implementations of system service and hardware abstraction layers are available in the "/
vcp2_xxx/arch" directory of the product package.

3. Test the HBI. Use the provided HBI Memory Test application to verify that the VCP2's memory
space is accessible to the host and can be read/written at the speed that the host is expecting.
See Chapter 3, on page 7 of this guide.

4. Test the MPI bus. Use the provided MPI Test to ensure MPI bus signal integrity between the
VCP2 and SLACs. See Chapter 4, on page 9 of this guide.

5. Run the Quick Start application. Configure and run the Quick Start application to ensure the end
to end operation of the system from the host to Tip/Ring. See Chapter 5, on page 11 of this
guide.

6. Write the end user application. The MPI, HBI, SSL, and HAL components are now functional,
greatly simplifying the control application troubleshooting process. Refer to the VP-API-II
Reference Guide for information on the API interface used by the host program to control the
VCP2.

6

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

Figure 2–1 Steps To Take

Customer Host

VoicePath API-II

S
ys

te
m

 S
er

vi
ce

s
La

ye
r (

S
S

L)

Hardware Abstraction Layer (HAL)

Customer Application or Zarlink
Quick Start Application

Voice Control
Processor

(VCP2)

Host Bus Interface (HBI)

Microprocessor
Interface (MPI)

S
LA

C
 (C

od
ec

) …

S
LA

C
 (C

od
ec

)

S
LA

C
 (C

od
ec

)

SLIC (Line Driver)

SLIC (Line Driver)

SLIC (Line Driver)

… … …

Tip/Ring

Tip/Ring

Tip/Ring

VP Test Library

2

1

3

4

5

CHAPTER

7

3 HBI MEMORY TEST

3.1 OVERVIEW
Before booting the VCP2 for the first time, a user should execute the HBI Memory Test located in
located in directory "install_dir/sdk/tools/hbi_mem_test". This program writes data to the VCP2 over
the HBI bus using the Hardware Abstraction Layer functions and then checks to see if the data can
be read back correctly.

3.2 USER MODIFICATIONS
The user may need to make customizations to the HBI Memory Test Application prior to execution.
The next two subsections will explain such customizations.

3.2.1 Test Options
The type of testing performed can be controlled in "vtd_mem_test.c" by use of the preprocessor
options listed below.

3.2.2 Board Initialization
The file "brd_init.c" contains the function InitializeBoard() which is used to perform any specific
board initialization that may be needed. The customer needs to change this function based on their
hardware platform. In many cases, InitializeBoard() may be left as a stub (all content commented
out). But other systems may need to perform some initialization to set up components essential to
HBI communication.

The function as shipped is designed to work with a Zarlink demonstration platform. In this custom
implementation, the following tasks are performed: configure the on-board CPLD, assert the VCP2's
reset signal, set the VCP2's HBI configuration (CONFx) pins, and then deassert the VCP2's reset
signal.

3.3 BASIC PROGRAM OPERATION
Before the memory testing is performed, the program first checks to see if it can identify the VCP2
hardware silicon version by reading the hardware silicon version register. It then reads and displays
the PCLK register, which gives the PCM clock speed (see Chipset User's Guide for the system's
SLAC). Then the module tests the HAL functions with some a memory test. The test concludes with

Table 3–1 Debug Options

Debug Option Defined by
Default Purpose (when option is defined)

HBI_HAL_DEBUG Yes Enables display of progress and debug
information.

EXIT_ON_HW_VERSION_REG_FAIL No Exits upon failure to read the VCP2
Hardware Version Register.

NEED_MORE_DEBUG No

Prints more information regarding the
address being read, the value written into

that address and the value that is being read
back. Note that this is used during the small

block testing.

TEST_MULTI_WORD_RD_WR Yes Performs the memory multi-word read write
test.

8

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

a message indicating success if it recognizes the silicon revision version and the memory test
passes. A sample output for the HBI Memory test using a Zarlink demonstration board is shown in
Appendix A.

3.4 TROUBLESHOOTING
The failure of a memory test can occur due to:

• PCLK or FS not being present at time of VCP2 boot.
• Problems in the HAL implementation software
• Problems in the hardware
• Configuration error in HBI test software
Use the debug options listed under the User Modifications section to help in troubleshooting.

CHAPTER

9

4 MPI TEST

4.1 OVERVIEW
The MPI Test located in directory "install_dir/sdk/tools/vcp2_mpi_test" is used to help verify correct
operation and signal integrity of the MPI bus between the VCP2 and the SLACs.

Note:
The MPI Test does not replace good layout practices and full signal integrity characterization using high per-
formance scopes and other lab equipment. It simply performs several read/write transactions between the VCP
and the SLAC looking for errors, and does not guarantee MPI signals meet the data sheet requirements.

The test is composed of a host application (C-language source provided in the VCP2 Package) and
a special VCP2 firmware image that performs a read/write test to all SLAC devices detected by the
VCP2.

Remember that the HBI must be free from errors for the MPI Test to function reliably. See Chapter
4, on page 9. First Steps for more information about the recommended design process.

4.2 USER MODIFICATIONS
There are several platform specific HBI test configurations that have to be done by the user before
the MPI Test application can be executed. The files that need to be modified are described below.

4.2.1 Define Appropriate VoicePath Device Profile
Default profiles are provided in the MPI Test application in the file profiles8_790.c. The device
profile should be altered to reflect the user's platform configuration. Use Profile Wizard located in
the tools directory of the VCP2 Package to create an appropriate device profile. For more
information on profiles, refer to the Profiles Section of the VP-API-II User's Guide.

4.2.2 Modify brd_init.c
The file "brd_init.c" contains the function InitializeBoard() which is used to perform any specific
board initialization that may be needed. The customer needs to change this function based on their
hardware platform. In many cases, InitializeBoard() may be left as a stub (all content commented
out). But other systems may need to perform some initialization to set up components essential to
HBI communication.

The function as shipped is designed to work with a Zarlink demonstration platform. In this custom
implementation, the following tasks are performed: configure the on-board CPLD, assert the VCP2's
reset signal, set the VCP2's HBI configuration (CONFx) pins, and then deassert the VCP2's reset
signal.

4.2.3 Configure Precompiler Options

4.2.3.1 app_des.h
This file contains preprocessor options describing device and board configuration specific to the
application.

4.2.3.2 mpi_test_vcp.c
The preprocessor macro term_printf may need to be redefined to work with an architecture's display
function. To poll the VCP2 instead of working through an interrupt service routine, define
POLL_VCP_EVENTS. To exit the program upon reaching an error, define EXIT_ON_ERROR.
Otherwise, the program will never terminate.

10

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

4.3 USING THE PROGRAM
The MPI Test host application will boot and initialize the VCP2 with the MPI Test firmware image.
The program will display the message Device initialization complete. Detected SLACs: xxx where
xxx is a bit-field representing the chip-selects of SLACs found attached to the VCP2. The user
should check this value against the expected number of SLACs. For example, 0000 0000 0000
0111 indicates that the VCP2 initialized 3 SLACs (on chip-selects 0,1, and 2).

After initialization is complete, the test will listen for status messages from the VCP2 passed in the
form of VP_DEV_EVID_STEST_CMP (self-test complete) events. A self-test complete event's
eventData field will be equal to 0 if no MPI transaction has failed. The test will run until there is an
MPI error or until the board is reset. It takes approximately 20 ms after VCP2 initialization to run a
full MPI test. Wait for at least two self-test complete events to ensure a complete MPI test is run
(while the self-test events contain information about the MPI tests, the frequency of the events is
timer-driven and does not directly reflect the number of MPI tests run). It is suggested that the MPI
test run for many thousands of iterations (100,000 iterations takes ~30 seconds, if successful). In
the event of an MPI error, a VP_DEV_EVID_STEST_CMP event will be returned immediately with
failure information. A sample output for the MPI test using a Zarlink demonstration board is shown
in Appendix A.

Note:
Do not use the MPI Test image for regular operation of the VCP2. The only API functions that are supported
by this firmware image are system configuration functions (VpMakeDeviceObject, VpMakeLineObject, VpGet-
DeviceInfo, VpGetLineInfo, VpFreeLineCtx, VpMakeDeviceCtx, VpMakeLineCtx), and the functions VpBoot-
Load, VpInitDevice, VpSetOption, VpGetEvent, and VpGetResults.

4.4 BASIC PROGRAM OPERATION
The sequence of events the MPI Test host application performs is:

1. Make the device object and context (explained in the VP-API-II Reference Guide).
2. Call VpBootLoad with the MPI Test VCP2 image, passing a valid device profile, with all other

profiles specified during VpBootLoad set to VP_PTABLE_NULL. It is important that all other
profiles are null; otherwise the test will not be performed. Poll for the expected
VP_DEV_EVID_BOOT_CMP event and its associated results using the VpGetEvent and
VpGetResults API commands. After the VCP2 has been booted, the MPI will automatically
begin testing.

Note:
The VCP2 will not boot correctly unless PCLK and FS are both connected at time of boot.

3. Create line objects and contexts. Refer to the VP-API-II Reference Guide for more information.
4. Issue a VpSetOption command for the VP_OPTION_ID_EVENT_MASK option with the

VP_DEV_EVID_STEST_CMP event type unmasked.
5. Poll the VpGetEvent command for events. A VP_DEV_EVID_STEST_CMP event should be

received approximately once every second after boot load until an MPI error is found. If the
MPI bus is operating properly, these "self test complete" events should contain 0 in the
eventData field. Otherwise, the event will contain the following pieces of information:
a) The channelId field will have the chip-select of the SLAC which experienced MPI problems.
For 790 chipsets, the received channelId represents the chip-select of the SLAC in question.
b) The eventData field will have the expected MPI data. For 790 chipsets, the expected data
is stored in the upper byte, and the data received from the SLAC in the lower byte.

Observed MPI errors may be due to an incorrect clock setting, a bad physical connection, or cross
talk on the MPI bus.

CHAPTER

11

5 QUICKSTART
APPLICATION

The Quick Start Application located in directory "install_dir/sdk/apps/vcp2_example" demonstrates
some of the functionality of the VP-API-II. The purpose of this application is to ensure that the major
system components (VCP2, SLAC, SLIC, HAL, SSL, and API) are configured properly without the
user having to write custom application code. The Quick Start application provides an end-to-end
sanity check and illustrates the functionality of the platform.

5.1 OVERVIEW
The Quick Start application uses a telephone hooked into the VTD for input. Its behavior is based
on a combination of precompiler macros, runtime options controlled by DTMF signals, and a state
machine triggered by hook events. The application provides output to the phone in forms such as
tone, ringing, and metering, and will display debug and help information on the host via a serial port.

The Quick Start application implements the following high-level state machine.

5.2 USER MODIFICATIONS
There are several platform specific HBI test configurations that have to be done by the user before
the MPI Test application can be executed. The files that need to be modified are described below.
This section assumes the user has completed configuring the API and written the SSL and HAL
modules. If not, consult the "First Steps" section of this guide.

5.2.1 Translate the Boot Image
The Quick Start application expects a boot image to be stored in the file boot_image_xxx.h. Use the
boot image converter ldr2c.exe located in the tools directory of the VCP2 Package to convert the
VCP2 firmware image (located in the /vcp2_xxx /firmware/vcp2 directory of the VCP2 Package) into
a C-language format. This tool is explained in Chapter 6, on page 15.

5.2.2 Define Appropriate VoicePath Profiles
Default profiles are included in the Quick Start Application source code inside profiles8_xxx.c. The
device profile should be altered to reflect the user's platform configuration. Use Profile Wizard,
located in the tools directory of the VCP2 Package to create an appropriate device profile. Custom
AC and DC profiles may also be desired but not required for this quick-start application. For more
information on profiles, refer to the Profiles section of the VP-API Reference Guide.

Table 5–1 QuickStart State Machine

State Hook Transition Action

State 1 Reset on hook OHT state

State 2 First off hook Dial tone

State 3 First on hook Ringing

State 4 Second off hook Morse code message "CQ...."

State 5 Second on hook Go back state 1

12

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

5.2.3 Modify brd_init.c
The file "brd_init.c" contains the function InitializeBoard() which is used to perform any specific
board initialization that may be needed. The customer needs to change this function based on their
hardware platform.

Note:
The implementation of functions in brd_init.c will be the same as those functions from Section 4.2.2. See
Section 4.2.2 for more details.

5.2.4 Configure app_des.h
This file contains declarations that are specific to the platform being used. Review the section
commented as "Compile Time Options" and configure as needed. Some of the variable definitions
that might have to be changed are MAX_DEVICES_ON_BOARD, MAX_LINES_ON_BOARD and
MAX_DTMF_DETECTION_LINES.

5.2.5 Configure framer_dummy.c (optional)
This file contains a dummy PCM framer interface. Since this is a stub implementation, all the
functions in this file currently perform no action other than printing a debug statement. They may be
replaced with the appropriate implementation if a PCM framer is present and desired. This step may
only be required if the clocks provided to the SLAC are derived from a framer or other external
source.

5.3 BASIC PROGRAM OPERATION
The program first performs any platform initialization that may be necessary. It then initializes and
configures the framer. The Quick Start application then creates and initializes the VCP2 device
context and boots the VCP2 with the VpBootLoad function. Line contexts are created and the VCP2
is initialized with the VpInitDevice function. Possible/expected events are then unmasked with
VpSetOption since most events are masked by default. The Quick Start application then performs
further initializations including initializing ringing parameters, and configuring the PCM highway.

The application performs actions such as enabling DTMF detection, getting the current line state,
and placing the line into the on-hook transmission state (OHT) depending on the events received
from the VCP2. Events from the VCP2 are handled by a function called the VtdEventHandler(). This
function can be called from the interrupt context or from a routine that is polling for events. In either
case this function is passed a pointer to a structure that was filled by the VpGetEvent() function.

A sample output for the QuickStart Application using a Zarlink demonstration board is shown in
Appendix A.

5.4 USING THE PROGRAM
Perform the following exercise to verify that the Quick Start application is running correctly:

1. Connect a standard POTS telephone to either line 1 or line 2 of the VTD.
2. Lift the handset off-hook and listen for a dial tone.
3. Hang up the telephone and verify that the phone starts ringing.
4. Take the handset off-hook again and listen for a morse code.
5. Hang up the telephone and verify that it does not ring.

13

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

5.5 HELP OPTIONS
The Help options can be displayed by attaching a phone to line 0, going off-hook, and pressing the
"*" button on the telephone keypad. Five options are available to the user, and each of them is
explained below:

Table 5–2 QuickStart Help Options

Option Description

* Displays a list of available options.

00

Displays the results from the VpGetOption function. Currently only two options are
supported. Access these by keying in the following codes:
 VP_DEVICE_OPTION_ID_PULSE: 00 0*
 VP_OPTION_ID_EVENT_MASK: 00 10*

20
Starts metering. The command to start metering is:
20 X* where X is the desired number of metering pulses.

14

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

CHAPTER

15

6 BOOT IMAGE TOOLS

6.1 OVERVIEW
Two executables for converting the VCP2 boot image are included in the VCP2 Package. The first
(deFlater.exe) compresses a boot image, reducing the amount of memory required to store it. The
VP-API can then decompress the image as it is loading it into the VCP2. The second tool (ldr2c.exe)
will take a firmware image and generate a header file containing C-language code that contains the
boot image as an array. This is provided to allow simple inclusion of the boot image within C
applications.

Both programs are command-line utilities for Microsoft Windows and can be found in the "/
VCP2_xxx/tools" directory of the VCP2 Package.

6.2 LDR2C
This utility converts a binary VCP2 firmware image into C declaration format for use and inclusion
as a ".h" file. This allows the firmware image to be statically compiled into the host application. The
resulting C code declares an unsigned char array initialized with the firmware image data.

Usage: ldr2c image_file c_file

image_file - the binary firmware image file (*.hbi) to be converted

c_file - the C source code file (or header file) in which to place the results

Example Output:

>ldr2c VCP2_v1.86_rc_14.hbi boot_image.h
Opening file 'VCP2_v1.86_rc_14.hbi' for input... done.
Opening file 'boot_image.h' for output... done.
Creating C file from boot stream file... done.

6.3 DEFLATER
This program can be used to compress a VCP2 firmware image. The compressed image can be
decompressed on-the-fly by VpBootLoad() before booting the VCP2. Eight different levels of
compression (8 to 15) are available, with tradeoffs between resulting image size, speed of
decompression during the bootload process, and amount of memory required in the host to
decompress.

Compressed images take up approximately half the memory of uncompressed images. This is
particularly useful when code memory is limited and the firmware image is to be compiled into the
host application (sending the output of this tool to ldr2c will give you a header file version of the
compressed image). There is a memory overhead during decompression defined by
sizeof(VpScratchMemType) which is typically between 8-10k, depending on what options are set.
To find out more about compressed images, refer to the VpBootLoad function description in the VP-
API-II Reference Guide and the comments in vp_api_cfg.h.

Usage: deflater [-winbits] infile [outfile]

winbits - level of compression, from 8 (worst) to 15 (best); default is 8

infile - file to be compressed

outfile - file for compressed output

Example Output:

>deflater -8 VCP2_v1.86_rc_14.hbi VCP2_v1.86_rc_14.hbiz

16

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

Zarlink Deflater v1.1

 Deflating: VCP2_v1.86_rc_14.hbi -> VCP2_v1.86_rc_14.hbiz
 Dictionary size: 256 bytes
 Input file size: 163 kB
Output file size: 93 kB (56%)
Adler32 checksum: 187F2FB8h
 Verifying: inflated to 163 kB

CHAPTER

17

7 TECHNICAL SUPPORT

Go to http://www.zarlink.com to get the latest product information and documentation.

18

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

APPENDIX

19

A SAMPLE OUTPUTS

A.1 SAMPLE OUPUT FOR HBI MEMORY TEST
The following output was created using the UVB. The output shown indicates the HBI bus is
properly configured.

Configuring DIN connector in HBI interface mode...
Holding the DIN connector in reset
Setting HBI clock
setting HBI config pins
Releasing the DIN connector reset
Board Setup complete.
Initializing CPLD and PINCONFIG register...
Selecting Page 255
Verifying HWREVCODE register...
Setting Page 255 base register: 0x3fe0
HBI-Access:Add:0xffff, Read: 0x b

Revision ABA VCP2 or VPP silicon found.

PCLKSEL Register = 0x03ff
Please make sure this register setting is correct based on the
clock signal provided to the VCP2/VPP device.
NOTE: By default this register is configured to autodetect
PCLK freq given FS.

Starting Memory Test...
Testing DM FIXED >>>
--
<<< Testing DM FIXED Done
Testing DM PAGE 0 >>>
--
<<< Testing DM PAGE 0 Done
Testing DM PAGE 1 >>>
--
<<< Testing DM PAGE 1 Done
Testing PM PAGE 0 >>>

<<< Testing PM PAGE 0 Done
Testing PM PAGE 1 >>>

<<< Testing PM PAGE 1 Done
Testing PM PAGE 2 >>>

<<< Testing PM PAGE 2 Done
Testing PM PAGE 3 >>>

<<< Testing PM PAGE 3 Done
Starting Memory multi word (Access size = 16) HBI access verification...
Testing DM FIXED >>>
--
<<< Testing DM FIXED Done
Testing DM PAGE 0 >>>
--
<<< Testing DM PAGE 0 Done
Testing DM PAGE 1 >>>
--
<<< Testing DM PAGE 1 Done
Testing PM PAGE 0 >>>

20

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

<<< Testing PM PAGE 0 Done
Testing PM PAGE 1 >>>

<<< Testing PM PAGE 1 Done
Testing PM PAGE 2 >>>

<<< Testing PM PAGE 2 Done
Testing PM PAGE 3 >>>

<<< Testing PM PAGE 3 Done

SUCCESS:: Memory test passed

A.2 SAMPLE OUPUT FOR MPI TEST
The following output from the MPI Test shows a system with 1 SLAC connected to the VCP2. After
a few seconds of testing, the SLAC is removed from the VCP2 and an MPI failure is generated.

mpi_test
Switching on the battery for the SLICs...
Configuring DIN connector in HBI interface mode...
Holding the DIN connector in reset
Setting HBI clock; 8 MHz
setting HBI config pins
Releasing the DIN connector reset
Board Setup complete.

Welcome to the Zarlink VP-API MPI Test application.

Creating Device Object...done
Downloading VCP2 boot image...done
Received event: VP_EVID_BOOT_CMP
Reading Checksum...VpEvent Cat:Id = VP_EVCAT_RESPONSE:VP_DEV_EVID_BOOT_CMP
VpEventType.channelId = 0x0
VpEventType.deviceId = 0x0
VpEventType.eventData = 0x0
VpEventType.parmHandle = 0x0
VpEventType.hasResults = 0x1
done. Checksum Data:
VpChkSumType.loadChkSum = 0xc91434dc
VpChkSumType.vInfo.vtdRevCode = 0xb
VpChkSumType.vInfo.swProductId = 0x4
VpChkSumType.vInfo.swVerMajor = 0x1
VpChkSumType.vInfo.swVerMinor = 0x88
creating Line Object 0, TermType = VP_TERM_FXS_TO_TL...done
creating Line Object 1, TermType = VP_TERM_FXS_TO_TL...done
creating Line Object 2, TermType = VP_TERM_FXS_TO_TL...done
creating Line Object 3, TermType = VP_TERM_FXS_TO_TL...done
Initializing VCP2...done
Setting default options for VCP2(All Lines)...
Received event: VP_DEV_EVID_DEV_INIT_CMP(0)
Device initialization complete Event Data: 0x1
Setting up events masks...
done
No mpi errors...
No mpi errors...
No mpi errors...
No mpi errors...
No mpi errors...
No mpi errors...
No mpi errors...
No mpi errors...
No mpi errors...
MPI problem detected on SLAC #1: expected 0xA8, got 0xFF
ERROR: Unknown event or Error while handling the event; Printing the event...VpE
vent Cat:Id = VP_EVCAT_TEST:VP_DEV_EVID_STEST_CMP
VpEventType.channelId = 0x1

21

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

VpEventType.deviceId = 0x0
VpEventType.eventData = 0xa8ff
VpEventType.parmHandle = 0x0
VpEventType.hasResults = 0x0
ERROR: VtdEventHandler = VP_STATUS_ERR_VERIFY.

ERROR: Unknown event or Error while handling the event; Printing the event...VpE
vent Cat:Id = VP_EVCAT_FAULT:VP_DEV_EVID_CLK_FLT
VpEventType.channelId = 0x0
VpEventType.deviceId = 0x0
VpEventType.eventData = 0x1
VpEventType.parmHandle = 0x0
VpEventType.hasResults = 0x0
ERROR: VtdEventHandler = VP_STATUS_FAILURE.

A.3 SAMPLE OUPUT FOR QUICKSTART APPLICATION
This output shows the QuickStart application initializing a system with four
lines and interacting with a user. This output resulted from a user picking up
a phone on line 0 and pressing the "*" key.

Switching on the battery for the SLICs...
Configuring DIN connector in HBI interface mode...
Holding the DIN connector in reset
Setting HBI clock; 8 MHz
setting HBI config pins
Releasing the DIN connector reset
Board Setup complete.

Welcome to the Zarlink VP-API quick start demo application.

Initializing Framer...
Creating Device Object...done
Downloading VCP2 boot image...done
Received event: VP_EVID_BOOT_CMP
Reading Checksum...VpEvent Cat:Id = VP_EVCAT_RESPONSE:VP_DEV_EVID_BOOT_CMP
VpEventType.channelId = 0x0
VpEventType.deviceId = 0x0
VpEventType.eventData = 0x0
VpEventType.parmHandle = 0x0
VpEventType.hasResults = 0x1
done. Checksum Data:
VpChkSumType.loadChkSum = 0xc30f0b5c
VpChkSumType.vInfo.vtdRevCode = 0xb
VpChkSumType.vInfo.swProductId = 0x4
VpChkSumType.vInfo.swVerMajor = 0x1
VpChkSumType.vInfo.swVerMinor = 0x88
creating Line Object 0, TermType = VP_TERM_FXS_TO_TL...done
creating Line Object 1, TermType = VP_TERM_FXS_TO_TL...done
creating Line Object 2, TermType = VP_TERM_FXS_TO_TL...done
creating Line Object 3, TermType = VP_TERM_FXS_TO_TL...done
Initializing CID Profile table
Initializing VCP2...done
Setting default options for VCP2(All Lines)...
Received event: VP_DEV_EVID_DEV_INIT_CMP(0)
Device initialization complete Event Data: 0x1
Setting up events masks...
Configuring line 1 for different DC feed, Ringing Profile...done
Line 0 Ring Init, LCAS State->Normal, TimeSlot->0, CODEC->Mu-Law, DTMF->ON, DTMF
 Status=0x00000001, DTMF Remaing Resources=15, Line State: DISCONNECT -> OHT
Line 1 Ring Init, LCAS State->Normal, TimeSlot->2, CODEC->Mu-Law, DTMF->ON, DTMF
 Status=0x00000003, DTMF Remaing Resources=14,
DTMF->OFF, DTMF Status=0x00000001, DTMF Remaing Resources=15,
Line State: DISCONNECT -> OHT
Line 2 Ring Init, LCAS State->Normal, TimeSlot->4, CODEC->Mu-Law, DTMF->ON, DTMF
 Status=0x00000005, DTMF Remaing Resources=14, Line State: DISCONNECT -> OHT
Line 3 Ring Init, LCAS State->Normal, TimeSlot->6, CODEC->Mu-Law, DTMF->ON, DTMF
 Status=0x0000000d, DTMF Remaing Resources=13, Line State: DISCONNECT -> OHT
Issuing Get loop condition command...done

22

V P A P I - I I T E S T L I B R A R Y U S E R ’ S G U I D E

LoopCond: VpLoopCondResultsType.rloop = 32767
LoopCond: VpLoopCondResultsType.ilg = 16
LoopCond: VpLoopCondResultsType.imt = -8
LoopCond: VpLoopCondResultsType.vsab = 9908
LoopCond: VpLoopCondResultsType.vbat1 = -9634
LoopCond: VpLoopCondResultsType.vbat2 = -29047
LoopCond: VpLoopCondResultsType.vbat3 = 463
LoopCond: VpLoopCondResultsType.mspl = 0
LoopCond: VpLoopCondResultsType.selectedBat = VP_BATTERY_2
LoopCond: VpLoopCondResultsType.dcFeedReg = VP_DF_RES_FEED_REG
Received event: VP_EVID_HOOK_OFF(2); TS = 2010
Line State: OHT -> Talk, Feeding Dial Tone
Received event: VP_EVID_HOOK_OFF(0); TS = 29640
Line State: OHT -> Talk, Feeding message
Line: 0, DTMF Digit: 11, Timestamp 41504: Edge: Leading

Command arguments End Comments
<*> Print this help
<00> <Option ID> <*> Get an Option
<20> <num meter> <*> Start metering (Pulses specified)
Line: 0, DTMF Digit: 11, Timestamp 41824: Edge: Trailing

	Table of Contents
	Introduction
	1.1 Overview
	1.2 VCP2 Software Design Flow
	1.3 VCP2 Package Components at a Glance

	First Steps
	HBI Memory Test
	3.1 Overview
	3.2 User Modifications
	3.2.1 Test Options
	3.2.2 Board Initialization

	3.3 Basic Program Operation
	3.4 Troubleshooting

	MPI Test
	4.1 Overview
	4.2 User Modifications
	4.2.1 Define Appropriate VoicePath Device Profile
	4.2.2 Modify brd_init.c
	4.2.3 Configure Precompiler Options
	4.2.3.1 app_des.h
	4.2.3.2 mpi_test_vcp.c

	4.3 Using the Program
	4.4 Basic Program Operation

	QuickStart Application
	5.1 Overview
	5.2 User Modifications
	5.2.1 Translate the Boot Image
	5.2.2 Define Appropriate VoicePath Profiles
	5.2.3 Modify brd_init.c
	5.2.4 Configure app_des.h
	5.2.5 Configure framer_dummy.c (optional)

	5.3 Basic Program Operation
	5.4 Using the Program
	5.5 Help Options

	Boot Image Tools
	6.1 Overview
	6.2 Ldr2c
	6.3 Deflater

	Technical SUpport
	Sample Outputs
	A.1 Sample Ouput for HBI Memory Test
	A.2 Sample Ouput for MPI Test
	A.3 Sample Ouput for QuickStart Application

