
Attacking Automatic Wireless Network Selection

Dino A. Dai Zovi, Shane A. Macaulay
ddz@theta44.org, ktwo@ktwo.ca

March 20, 2005

Abstract

Wireless 802.11 networking is becoming so prevalent
that many users have become accustomed to having
available wireless networks in their workplace, home,
and many public places such as airports and coffee
shops. Modern client operating systems implement
automatic wireless network discovery and known net-
work identification to facilitate wireless networking
for the end-user. In order to implement known net-
work discovery, client operating systems remember
past wireless networks that have been joined and au-
tomatically look for these networks (referred to as
Preferred or Trusted Networks) whenever the wire-
less network adapter is enabled. By examining these
implementations in detail, we have discovered previ-
ously undisclosed vulnerabilities in the implementa-
tion of these algorithms under the two most prevalent
client operating systems, Windows XP and MacOS
X. With custom base station software, an attacker
may cause clients within wireless radio range to asso-
ciate to the attacker’s wireless network without user
interaction or notification. This will occur even if the
user has never connected to a wireless network before
or they have an empty Preferred/Trusted Networks
List. We describe these vulnerabilities as well as their
implementation and impact.

1 Introduction

IEEE 802.11 wireless networking has demonstrated
explosive growth and popularity, especially in dense
urban areas. This has resulted in commercial offer-
ings of public access wireless networks (hotspots) in
many airports, hotels, coffee shops, and even some
parks. Large hotspot providers include T-Mobile and
Verizon. There are even community-based projects to
provide free hotspots in community areas like Man-
hattan parks [1].

The prevalence of these hotspots has had an unan-

ticipated effect on the mechanisms in client operating
systems for selecting wireless networks. It has been a
known problem that an attacker can provide a rogue
access point with a common name (such as the de-
fault SSID of a popular home-office access point, such
as linksys). If a nearby wireless client has associated
to a similarly-named access point in the past, they
may mistake the rogue access point for their trusted
access point. The prescribed solution to this is to
ensure that all networks connected to are encrypted.
While this is possible when the only networks con-
nected to are at the home or workplace, the use of
hotspots (which must be unencrypted to provide pub-
lic access) means that users are more likely to have
connected to unencrypted networks in the past.

According to a Gartner research report (quoted in
[2]), Microsoft Windows and Apple MacOS are the
two most prevalent desktop operating systems, with
96% and 2.8% market share, respectively. Our re-
search examined the latest releases of these desktop
operating system families, Windows XP Service Pack
2 and MacOS X 10.3.8. We describe in detail the
mechanisms used by the latest releases of these op-
erating systems for automatic network selection and
how they may be attacked. Our research in this area
has also uncovered vulnerabilities in the implemen-
tation of these algorithms. Namely, the implementa-
tions set the wireless network adapter in a “parked”
mode when the user is not associated to a network.
In this mode, the card’s “desired SSID” setting is
set to a value that the implementor has expected to
never exist as an available network. When a net-
work by this name does exist (or at least appears
to), however, the wireless network card will automat-
ically associate. This occurs without user interaction
or notification.

This paper is organized as follows. Section 2 pro-
vides an overview of the concepts involved in 802.11
wireless networking and describes related work in
802.11 client security research. Section 3 documents

1



in detail how Windows XP and MacOS X implement
automatic wireless network selection. Section 4 de-
scribes vulnerabilities in the implementations of au-
tomatic wireless network selection and weaknesses in
the algorithms they use. In section 5, we describe the
implementation of a customized software access point
driver to exploit the previously described vulnerabil-
ities. Section 6 discusses the ramifications of these
vulnerabilities and describes future work in this area
of research.

2 Background

The IEEE 802.11 standard [3] specifies medium ac-
cess control (MAC) and physical layer (PHY) opera-
tion for local area wireless networking. It is now the
most common standard for wireless networking and
most laptops now include integrated wireless network
cards using the 802.11 standard.

The 802.11 standard defines two entities in a wire-
less network, the Station (STA) and Access Point
(AP). A wireless network, or Basic Service Set (BSS)
as it is referred to in the standard, may be created
in two configurations: the Independent Basic Service
Set (IBSS) and the Extended Service Set (ESS). Ev-
ery IBSS or ESS is named by a Service Set Identifier
(SSID), usually a 7-bit ASCII string with a length
not exceeding 32 characters. An IBSS, or Ad-Hoc
network, is created by any number of stations with-
out requiring any Access Points. The more common
network configuration, an ESS or Infrastructure net-
work, is created with one or more Access Points creat-
ing a Distribution System (DS) that clients may join.
The most common configuration is an Infrastructure
network with one Access Point.

In order to understand the attacks introduced in
this paper, we must detail the 802.11 frame types
used for locating and joining networks. In order to
announce its presence, each AP in an ESS broadcasts
Beacon frames containing the SSID and various char-
acteristics of the ESS, including supported data rates
as well as whether encryption is enabled. Stations
may locate nearby networks by observing these Bea-
con frames or by sending Probe Request frames. The
Probe Request frame contains the SSID the STA is
looking for as well as the transfer rates supported by
the STA. The SSID may be an empty string indi-
cating that the frame is a broadcast Probe Request.
Access Points within signal range typically respond to
both broadcast Probe Requests and Probe Requests
containing their SSID with a Probe Response frame

containing the network’s SSID1, supported rates, and
whether the network is encrypted. If encryption is
enabled, the STA must authenticate prior to associ-
ating to the network. This is performed through a
sequence of Authentication frames. If the STA has
properly authenticated itself or the network does not
require authentication, the STA will send an Associa-
tion Request frame to which the AP responds with an
Association Response frame. At this point the STA
may begin to participate on the wireless network.

It is important to point out that while the stan-
dard specifies how a STA joins a ESS, how the ESS
is chosen is unspecified. The specification allows for
roaming between base stations with the same SSID,
but there is no mention of whether the base station
should be authenticated or simply trusted. The spec-
ification also does not address how a wireless client
is to select an available network, and this has been
left up to implementation by hardware and operating
system software vendors.

Although the security of wireless networks has been
the subject of much research, the security of wireless
clients has not had the same level of focus. There has
been some level of research and related work that we
have been able to build upon which we will briefly
describe.

Vulnerabilities in the 802.11 MAC layer have been
discovered that allow nearby attackers to launch
a denial-of-service attack against nearby wireless
clients, effectively “jamming” the wireless network
[5].

The Wireless LAN 802.11b Security FAQ [6] de-
scribes several attacks against wireless clients. The
FAQ mentions how a cloned base station (Evil Twin)
can produce a stronger signal than the legitimate base
station and divert unsuspecting clients away from
the original base station. The FAQ also mentions
that nearby wireless attacker can target vulnerable
TCP/IP services or perform denial-of-service attacks
against a nearby wireless client.

Max Moser’s Hotspotter [7] is an automated wire-
less client penetration tool for Linux. Hotspotter
places the attacker’s wireless network card in moni-
tor mode to passively listen for Probe Request frames.
For each Probe Request frame received, the requested
SSID is compared to a list of known hotspot names.
If there is a match, the wireless network card is re-
configured to act as an access point with that name.

1In response to a well-publicized practice called Wardriving
[4] many Access Points support an option to ignore broadcast
Probe Requests and not broadcast the SSID in Beacon frames.
Such access points are referred to as a closed or hidden.

2



3 Wireless Network Selection

3.1 Microsoft Windows XP Wireless
Auto Configuration

Microsoft Windows XP and Windows Server 2003
were the first Microsoft operating systems to fully
support 802.11 wireless networking on the client and
server, respectively. Under these operating systems,
wireless network configuration and detection is per-
formed through a process called Wireless Auto Con-
figuration.

Central to the configuration and operation of Wire-
less Auto Configuration are the Preferred Networks
List (PNL) and Available Networks List (ANL). The
PNL is an ordered list of the networks that the user
has connected to in the past. The ANL is an or-
dered list of all the Access Points that responded to
a broadcast Probe Request in the last wireless net-
work scan. Whenever the user connects to a new
network, that network’s name (SSID) is added to the
head of the PNL. Windows provides user interfaces
for viewing the Available Networks List, managing
the Preferred Networks List, and configuring the be-
havior of the Wireless Auto Configuration algorithm,
described below.

The Windows XP and Server 2003 Wireless Auto
Configuration algorithm [8] is presented in a pseu-
docode notation in Figure 1 but will also be presented
in narrative and a network trace in order to fully il-
lustrate its behavior.

The algorithm begins by building the Available
Networks List by sending a scan request to the wire-
less network card. This results in a broadcast 802.11
Probe Request with an empty SSID being sent over
every channel. Probe Responses are collected by the
card in the order they are received and this list of
networks along with configuration details such as en-
cryption status and available rates is returned to the
operating system. The algorithm then traverses the
Preferred Networks List in order and if a preferred
network is found in the Available Networks List, Win-
dows attempts to connect to the wireless network. A
connection is attempted to each preferred network
found in the Available Networks List until there is a
successful connection.

If no preferred networks were found in the Avail-
able Networks List or no connection attempts were
successful, Windows attempts a second pass of the
Preferred Networks List trying to connect to each
network in the Preferred Networks List in order re-
gardless of whether the network exists in the Avail-

Begin:
State = Unconnected
// Build list of visible networks (ANL)
AvailableNetworks = ScanForAvailableNetworks()

// Step through PNL in order until a network
// from the ANL is found and connected to
foreach n in PreferredNetworks
if AvailableNetworks contains n
then ConnectToWirelessNetwork(n)
if State == Connected then return

// If unable to connect to any networks in the
// intersection of the PNL and ANL, check for
// closed networks by stepping through PNL in
// order and attempting each network explicitly
foreach n in PreferredNetworks
ConnectToWirelessNetwork(n)
if State == Connected then return

// If unable to connect to any network in the
// PNL and the PNL contains an Ad-Hoc network,
// configure card for the first Ad-Hoc network
// in the PNL. Otherwise, if the configuration
// setting "Connect to Non-preferred Networks"
// is enabled, step through ANL in order and
// attempt to connect to each one.
if PreferredNetworks contains an Ad-Hoc network
then ConfigureAdHocNetwork

else
if ConnectToNonPreferredNetworks == True
then foreach n in AvailableNetorks

ConnectToWirelessNetwork(n)
if State == Connected then return

// If not connected thus far, generate a
// random SSID, wait, and restart algorithm
SetSSID(GenerateRandomSSID())
SleepForOneMinute()
Goto Begin

Figure 1: Pseudocode for Wireless Auto Configura-
tion Algorithm

3



1) 03:11:39.266743 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:02:2d:2b:a5:35
Probe Request (^]^V^K^A^T^B^T^A^X^E^Y^V...)
[1.0 2.0 5.5 11.0 Mbit]

2) 03:11:39.400194 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:02:2d:2b:a5:35
Probe Request () [1.0 2.0 5.5 11.0 Mbit]

3) 03:11:40.426391 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:02:2d:2b:a5:35
Probe Request (^]^V^K^A^T^B^T^A^X^E^Y^V...)
[1.0 2.0 5.5 11.0 Mbit]

4) 03:11:42.377495 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:02:2d:2b:a5:35
Probe Request (aye) [1.0 2.0 5.5 11.0 Mbit]

5) 03:11:44.432180 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:02:2d:2b:a5:35
Probe Request (bee) [1.0 2.0 5.5 11.0 Mbit]

6) 03:11:46.485148 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:02:2d:2b:a5:35
Probe Request (sea) [1.0 2.0 5.5 11.0 Mbit]

7) 03:11:48.500975 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:02:2d:2b:a5:35
Probe Request (^D^F^R^_^]^R^^^\^G^H^J^F...)
[1.0 2.0 5.5 11.0 Mbit]

Figure 2: Wireless Auto Configuration Algorithm
packet trace

able Networks List. This second pass is performed
in case any of the networks are “closed networks”, a
common deviation from the standard where the SSID
is not placed in 802.11 Beacon frames and broadcast
Probe Requests are not responded to.

If the wireless network card is not connected and
there are one or more Ad-Hoc networks in the Pre-
ferred Networks List, Wireless Auto Configuration
will configure the card for the most preferred Ad-
Hoc network available. If none are available, Wire-
less Auto Configuration will create the most preferred
Ad-Hoc network and the algorithm terminates.

If there have been no connections thus far and there
are no Ad-Hoc networks in the Preferred Networks
List, the algorithm examines the Connect To Non-
preferred Networks flag. If the flag is enabled (it is
disabled by default), Windows will attempt to con-
nect to each network in the Available Networks List
in order. If the flag is not set, the network card is
“parked” in Infrastructure mode with a randomly
generated SSID for 60 seconds at which point the
algorithm restarts.

When analyzing the algorithm from an attacker’s
point of view, it is most helpful to examine it at the
802.11 protocol layer. Figure 2 is a packet trace of
a single iteration of the Wireless Auto Configuration
algorithm running on a laptop with a fresh install
of Windows XP with Service Pack 2. The network
trace was recorded on a nearby laptop with its wire-
less network card in “monitor mode”, a special op-
erating mode where all received 802.11 frames are
returned to the operating system. The output has
been edited slightly for cleaner presentation by num-
bering frames, removing duplicate frames, wrapping
lines cleanly, and abbreviating long random SSIDs.

Frames 1-3 show the first phase of the algorithm
where the network card is “parked” with a random
SSID, but sends a broadcast Probe Request frame
when Wireless Auto Configuration initiates a scan re-
quest. Frames 4-6 result from the second phase of the
algorithm where a connection to each of the networks
in the Preferred Networks List is attempted in order.
We observe that the networks in the Preferred Net-
works List are (in order): “aye”, “bee”, and “sea”.
Since none of these networks were found, Frame 7
shows the wireless card being parked with another
random SSID. In the full trace, 16 Probe Requests for
the last random SSID were observed over one minute
before the algorithm on the observed wireless client
restarted.

3.2 Apple MacOS X AirPort

Apple’s MacOS X operating system supports wire-
less networking with Apple’s AirPort and AirPort
Extreme 802.11 wireless networking products for
802.11b and 802.11g, respectively.

MacOS X allows the user to select three wireless
network selection modes: always connecting to a spe-
cific wireless network, connecting to the most re-
cently associated network or automatically connect-
ing to the unencrypted network with the strongest
signal. The user may also manually select an alter-
nate available network or enter the name of a closed
network. In December 2003, a vulnerability was pub-
lished whereby if an attacker can get a MacOS X user
to join their wireless network, the attacker’s DHCP
server may provide an DHCP option specifying a di-
rectory server that the user’s machine will use as an
authentication server. MacOS X 10.3.3 addressed
this vulnerability by modifying the system to main-
tain a list of trusted wireless networks.

The MacOS X trusted wireless networks is a
system-wide list of networks the user has connected to

4



and opted to add to the list. No user interface is pro-
vided to view or modify this list. The list, in fact, is
even fairly difficult to find. It is stored as an XML file
which is base-64 encoded and stored within another
XML file containing basic wireless network adapter
settings. Cursory Internet searches reveal that the
existence of this list is completely undocumented, yet
many have discovered that they can delete the entire
file to clear the list of trusted wireless networks.

MacOS X begins the search for trusted wireless net-
works when a user logs in or the machine awakes from
sleep. The search begins with the network the ma-
chine was most recently associated with. If this net-
work is not found, each network in the trusted net-
work is attempted in order. If none of these networks
are found, a dialog is presented to the user stating
that none of their trusted wireless networks could be
found and asking whether they would like to join the
unencrypted network with the strongest signal and
optionally remember the network as a trusted wire-
less network. If the user opts not to connect to the se-
lected network, the wireless network card is “parked”
awaiting user interaction. In this state, the wireless
network card remains in Infrastructure mode, how-
ever, it is assigned a either a constant “dummy” SSID
or a dynamic SSID that is chosen when the driver is
initialized (system boot or resume). Both settings
have been seen, although the dummy SSID appears
to be set at system boot and when awakening from
sleep, but the dynamic SSID is only set when the
user logs in. Broadcast Probe Requests are sent on
each channel roughly every two minutes or when the
available networks need to be presented to the user.

4 Attacking Wireless Network
Selection

Through the detailed examination and documenta-
tion of the processes used by the two most prevalent
desktop operating systems, a number of vulnerabili-
ties in these processes were uncovered. The specific
vulnerabilities in each implementation is detailed be-
low and the attacks are summarized in terms of which
configurations are vulnerable in section 4.3.

4.1 Microsoft Windows Wireless Auto
Configuration

Windows’ Wireless Auto Configuration has several
serious weaknesses: all networks and their precedence

in the Preferred Networks List are revealed, ad-hoc
networks are automatically created, and “parking”
with a random SSID does not prevent associating to
an Access Point with custom firmware modifications.
Moreover, this association may occur without user in-
teraction or notification. Through these weaknesses,
the wireless client is most vulnerable when it is not
associated to a surrounding network.

When no preferred networks are discovered in the
Available Networks List built in the first phase of
the Wireless Auto Configuration algorithm, the al-
gorithm attempts to connect to each network in the
Preferred Networks List in order. An attacker within
signal range (potentially assisted by high-gain anten-
nae and signal boosters) may passively monitor a sin-
gle wireless channel and observe the Probe Requests
for each network connection attempted. The attacker
may use this information to recreate the victim’s Pre-
ferred Networks List. However, only the names and
precedence of the networks are revealed, their encryp-
tion status is not. With this knowledge, the attacker
may create a software Access Point with the SSID
of one of the networks in the victim’s Preferred Net-
work List. If the client is expecting the network to be
encrypted, the connection will fail and the attacker
may simply attempt the next network in their recre-
ated copy of the victim’s Preferred Networks List. If
any of the networks in the Preferred Networks List
are not encrypted, the attacker will have an oppor-
tunity to create a look-alike network that the client
will join.

If there are any Ad-Hoc networks in the Preferred
Networks List and none are found in the Available
Networks List, the client will become the first node
in the Ad-Hoc network. If this network is not config-
ured to be encrypted, any other client within wireless
signal range may join this network. If the network is
configured with WEP encryption, any of the known
WEP attacks may be performed against it. Several
of these attacks are facilitated by the fact that the
network interface is configured using Windows’ Au-
tomatic Private IP Addressing whereby the interface
is given an automatically selected IP address from
the link local IP address space 169.254.0.0/16 doc-
umented in RFC 3330 [9]. Because the interface is
configured, Windows will periodically send NetBIOS
broadcasts, continually supplying the attacker with
WEP encrypted data packets. Once the network is
joined by the attacker, they can proceed to discover
the self-assigned IP address used by the victim’s wire-
less network interface. This may be done by sniffing

5



the network for the previously mentioned NetBIOS
broadcasts or brute-forcing the link local IP address
space with Address Resolution Protocol (ARP) re-
quests for each possible IP address.

As described above, when the Wireless Auto Con-
figuration algorithm sleeps for 60 seconds before
restarting, the wireless network card is “parked” by
placing the card in Infrastructure mode with a ran-
dom SSID. Other card settings such as authentica-
tion mode or encryption are not changed. When the
card is placed in this state, it assumes its normal be-
havior attempting to connect to a network with that
name. If there are no entries in the Preferred Net-
works List or the last entry is an unencrypted net-
work, the network adapter will attempt to connect
to an unencrypted network with this random SSID.
If an attacker can provide a network with that name,
the wireless client will automatically associate to the
attacker’s wireless network.

This attack may be performed by modifying the
firmware of an Access Point to respond with Probe
Responses to Probe Requests for any SSID. This at-
tack is facilitated by using the newer firmware-less
wireless network cards (such as those using Atheros
chipsets). We describe the necessary driver modifica-
tions and implementation of this attack in Section 5.
As this network is joined without the Wireless Auto
Configuration Service’s knowledge, the user interface
does not inform the user that they have associated to
a network. In this case, the client may associate, re-
ceive an IP address from a DHCP server, and become
reachable on the network all while the interface in-
forms the user that they are not currently connected
to a network.

4.2 MacOS X AirPort

MacOS X’s AirPort implementation shares several
of the pitfalls identified in the Windows Wireless
Auto Configuration implementation but avoids oth-
ers. Similar to the vulnerabilities described above,
MacOS X AirPort reveals the list of trusted wire-
less networks and machines using the 802.11b AirPort
hardware may associate to a specially-configured ac-
cess point without user interaction or notification.

Like Microsoft Windows’ Wireless Auto Configu-
ration, MacOS X AirPort reveals the list of trusted
wireless networks when the system is looking for a
network to associate to. This is, however, an impor-
tant difference because MacOS X AirPort does not
continually look for the user’s trusted wireless net-
works, only when a user logs in or the system re-

sumes from sleep. This makes it more difficult for an
attacker to cause the user to join their rogue access
point as it adds temporal constraints, requiring the
attacker to be in the right place at the right time.

The drivers for the older 802.11b AirPort hardware,
like Wireless Auto Configuration, also keep the wire-
less card up in a “parked” state when not actively as-
sociated. As described above, the card’s desired SSID
is set to either a dynamic value or a static “dummy
SSID”. In order to further prevent unintended asso-
ciates, the card is set with WEP enabled, requiring a
rogue Access Point to know this WEP key in order to
cause the client to join automatically. This WEP key,
however, is the hard-coded, static 40-bit key (in hex-
adecimal) 0x0102030405. Our custom Access Point
software configured with this WEP key in Shared Key
authentication mode successfully causes nearby Air-
Port cards to automatically associate without requir-
ing any user interaction or providing any user notifi-
cation. The AirPort menu applet will, however, light
up, and if the user clicks on it, it will indicate that the
user is connected to a network. It should be noted
that the newer AirPort Extreme hardware and drivers
do not leave the card in a “parked” state vulnerable
to this attack. When the card is not associated no
wireless traffic is sent unless the user requests a scan
for visible networks.

4.3 Summary of Attacks

The attacks described above focus on the ability of
the attacker to provide a network that the wireless
client will automatically join. The attacker may per-
form this by either discovering the networks that the
client prefers or by using a special software access
point that masquerades as any SSID. We describe
the construction of such a software AP in section
5. Either way, the attacker must make this network
present when the victim is looking for a wireless net-
work to join.

If the victim is running MacOS X, the attacker
must be present when the user logs in or the system
wakes from sleep. Regardless of the operating system,
however, if the user is currently associated to a nearby
network, the attacker may forcibly cause the victim
to restart the search for available networks. The at-
tacker may achieve this by spoofing 802.11 Disasso-
ciation frames from the base station that the victim
is associated to. These frames are always sent in the
clear, even if the network is encrypted, and the only
information the attacker requires to forge them is the
hardware address of the base station, which is read-

6



ily available from the Beacon frames the base station
is required to continuously transmit. If the targeted
client is currently configured in Ad-Hoc mode, there
is no known way to cause it to restart the search for
a preferred network.

At this point, the attacker may learn the victim’s
preferred or trusted networks as they attempt to re-
join an available network or respond that they are
the base station for every requested SSID. If the tar-
geted client looks for one or more unencrypted net-
works, they will automatically join the attacker’s ac-
cess point.

As a special case that was mentioned above, if a
nearby Windows XP client is not currently associ-
ated to a network, it may still associate to a network
with a random SSID. When this is the case, this con-
nection will occur without notifying the user and the
user interface will still report that the machine is not
currently connected to any wireless networks.

The attacks detailed above have been observed and
verified against a Windows XP laptop with PCMCIA
PrismII and Orinoco Hermes-based 802.11b wireless
network cards as well as against a G4 Macintosh
with an internal AirPort 802.11b wireless card. We
also tested a Windows XP SP2 laptop with an inter-
nal 802.11a/b/g card based on the Atheros chipset
and found that while it still did send out Probe Re-
quests for randomly-generated SSIDs, it would not
join these networks automatically. By testing a newer
G4 Powerbook, we found that the newer Apple Air-
Port Extreme 802.11b/g cards did not probe for the
dynamic SSID and dummy SSIDs described above.
We hypothesize that the newer generation of wireless
network cards that perform more of the 802.11 han-
dling in software are more flexible and robust than
their firmware-based predecessors.

5 Attack Implementation

Implementation of attacks against 802.11 networks
and clients are often hampered by the limitations im-
posed by wireless network card firmware. For ex-
ample, certain frame types may be handled directly
by the firmware and will not be made available to
the host operating system. This behavior prevents
many commercial off-the-shelf 802.11 wireless net-
work cards from being used as an arbitrary attack
platform. Initial implementations of the attacks pre-
sented in this paper were attempted using wireless
network cards based on the PrismII chipset. These
chipsets feature a HostAP operating mode allowing

1) 00:49:04.007115 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:e0:29:91:8e:fd
Probe Request (^J^S^V^K^U^L^R^E^H^V^U...)
[1.0* 2.0* 5.5* 11.0* Mbit]

2) 00:49:04.008125 BSSID:00:05:4e:43:81:e8
DA:00:e0:29:91:8e:fd SA:00:05:4e:43:81:e8
Probe Response (^J^S^V^K^U^L^R^E^H^V^U...)
[1.0* 2.0* 5.5 11.0 Mbit] CH: 1

3) 00:49:04.336328 BSSID:00:05:4e:43:81:e8
DA:00:05:4e:43:81:e8 SA:00:e0:29:91:8e:fd
Authentication (Open System)-1: Succesful

4) 00:49:04.337052 BSSID:00:05:4e:43:81:e8
DA:00:e0:29:91:8e:fd SA:00:05:4e:43:81:e8
Authentication (Open System)-2:

5) 00:49:04.338102 BSSID:00:05:4e:43:81:e8
DA:00:05:4e:43:81:e8 SA:00:e0:29:91:8e:fd
Assoc Request (^J^S^V^K^U^L^R^E^H^V^U...)
[1.0* 2.0* 5.5* 11.0* Mbit]

6) 00:49:04.338856 BSSID:00:05:4e:43:81:e8
DA:00:e0:29:91:8e:fd SA:00:05:4e:43:81:e8
Assoc Response AID(1) :: Succesful

Figure 3: Windows XP host associating to random
SSID

the card to act as an Access Point. Other cards
based on the Orinoco Hermes chipset, for example,
require an alternate firmware to provide this func-
tionality. This operating mode makes management
frames, including Authentication and Association Re-
quest frames, available to the operating system to al-
low the operating system or a running user process
to provide station authentication and management
services. Notably missing, however, are the Probe
Request frames necessary to implement our attacks.
Due to the real-time requirements on Probe Request
handling, Probe Request frames are handled inter-
nally by the card firmware. This limited our attack
to sniffing for Probe Requests and immediately re-
configuring the card to serve as an access point for
the requested SSID, serializing the attack to target-
ing one wireless client at a time.

The newer generation of firmware-less wireless net-
work cards allow significantly more flexibility in
the implementation of attacks against IEEE 802.11.
Wireless network cards based on chipsets manufac-
tured by Atheros Communications, for example, do
not include a traditional firmware providing station
and/or access point functionality. Instead, all of this

7



1) 14:14:18.778980 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:30:65:00:e9:65
Probe Request (00-30-1e-37-7a-44-7f49c08d)
[1.0 2.0 5.5 11.0 Mbit]

2) 14:14:18.779845 BSSID:00:05:4e:43:81:e8
DA:00:30:65:00:e9:65 SA:00:05:4e:43:81:e8
Probe Response (00-30-1e-37-7a-44-7f49c08d)
[1.0* 2.0* 5.5 11.0 Mbit] CH: 1, PRIVACY

3) 14:14:18.837813 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:30:65:00:e9:65
Probe Request (00-30-1e-37-7a-44-7f49c08d)
[1.0 2.0 5.5 11.0 Mbit]

4) 14:14:18.906312 BSSID:00:05:4e:43:81:e8
DA:00:05:4e:43:81:e8 SA:00:30:65:00:e9:65
Authentication (Shared Key)-1: Succesful

5) 14:14:18.907962 BSSID:00:05:4e:43:81:e8
DA:00:30:65:00:e9:65 SA:00:05:4e:43:81:e8
Authentication (Shared Key)-2 [Challenge]

6) 14:14:18.909513 BSSID:00:05:4e:43:81:e8
DA:00:05:4e:43:81:e8 SA:00:30:65:00:e9:65
AuthenticationAuthentication (Shared-Key)-3
Data IV: 0 Pad 0 KeyID 0

7) 14:14:18.910320 BSSID:00:05:4e:43:81:e8
DA:00:30:65:00:e9:65 SA:00:05:4e:43:81:e8
Authentication (Shared Key)-4:

8) 14:14:18.911565 BSSID:00:05:4e:43:81:e8
DA:00:05:4e:43:81:e8 SA:00:30:65:00:e9:65
Assoc Request (00-30-1e-37-7a-44-7f49c08d)
[1.0 2.0 5.5 11.0 Mbit]

9) 14:14:18.912575 BSSID:00:05:4e:43:81:e8
DA:00:30:65:00:e9:65 SA:00:05:4e:43:81:e8
Assoc Response AID(1) : PRIVACY : Succes

Figure 4: AirPort client parked with dynamic SSID
associating

functionality is handled in software on the host and
a binary-only Hardware Abstraction Layer (HAL)
module is shipped to vendors and driver authors to
provide low-level functionality. This HAL module
enforces communications regulation compliance and
provides a consistent interface to the different imple-
mentations manufactured by Atheros. This binary-
only HAL is also used by the open-source drivers for
this family of wireless network cards.

To implement our attacks, we have taken the open-
source MADWiFi driver for Linux [10] and made sev-
eral modifications. We implemented several trivial
modifications including disabling SSID validation and
rewriting the SSID field of incoming Probe Requests

1) 14:25:05.926870 BSSID:ff:ff:ff:ff:ff:ff
DA:ff:ff:ff:ff:ff:ff SA:00:30:65:00:e9:65
Probe Request (dummy SSID *{M-^R^LIM-^O...)
[1.0 2.0 5.5 11.0 Mbit]

2) 14:25:05.927916 BSSID:00:05:4e:43:81:e8
DA:00:30:65:00:e9:65 SA:00:05:4e:43:81:e8
Probe Response (dummy SSID *{M-^R^LIM-^O...)
[1.0* 2.0* 5.5 11.0 Mbit] CH: 1

3) 14:25:06.095809 BSSID:00:05:4e:43:81:e8
DA:00:05:4e:43:81:e8 SA:00:30:65:00:e9:65
Authentication (Open System)-1: Succesful

4) 14:25:06.096565 BSSID:00:05:4e:43:81:e8
DA:00:30:65:00:e9:65 SA:00:05:4e:43:81:e8
Authentication (Open System)-2:

5) 14:25:06.098862 BSSID:00:05:4e:43:81:e8
DA:00:05:4e:43:81:e8 SA:00:30:65:00:e9:65
Assoc Request (dummy SSID *{M-^R^LIM-^O...)
[1.0 2.0 5.5 11.0 Mbit]

6) 14:25:06.099773 BSSID:00:05:4e:43:81:e8
DA:00:30:65:00:e9:65 SA:00:05:4e:43:81:e8
Assoc Response AID(1) :: Succesful

Figure 5: AirPort client parked with dummy SSID
associating

and Association Request frames with the configured
SSID of the software access point. Outgoing frames
required no modification. This allowed us to easily
fool the rest of the driver into serving any SSID re-
quested. This implementation allows us to create a
wireless network that masquerades as any network
requested by a client within range.

Figures 3, 4, and 5 show 802.11 frame traces of our
attack driver exercising the previously detailed vul-
nerabilities in wireless network selection. In each of
the three cases, the wireless client associated to a net-
work name that the implementation did not expect
to exist but was responded to by our attack driver.
This allowed us to cause the client to associate to our
network without any user interaction or notification.

Further work on the attack driver component will
focus on creating a network interface that will en-
able reception and transmission of raw frames, even
while serving as an access point. This functionality
will allow a user to utilize existing tools requiring
passive sniffing capabilities while also enabling active
attacks. In addition, it may enable true 802.11 MAC-
layer man-in-the-middle attacks.

8



6 Conclusion

We have shown that there are both architectural and
implementation vulnerabilities in common wireless
network selection algorithms. The broadcasting of
specific Probe Request frames containing the SSID
of a user’s desired network allows a nearby attacker
to learn the contents and precedence of the user’s de-
sired networks. With this knowledge, the attacker
may create a rogue access point with this SSID that
the user will automatically associate to.

In addition, both implementations also leave the
wireless network cards in a vulnerable state when
they are not currently associated to a network. Win-
dows XP configured the network card with a ran-
domly generated SSID while MacOS X AirPort uses
a dynamic, but not random, SSID. This is done as-
suming that no access points will ever serve these
SSIDs. We created a special access point that re-
sponded to any Probe Request, allowing us to serve
any SSID requested by a client within range. Exper-
iments with this driver revealed serious vulnerabili-
ties in the previously mentioned driver behavior. We
discovered that when our access point responded to
probes for these special SSIDs, we could cause clients
to associate to our network without any user inter-
action and little or no user notification. Under Win-
dows XP, the wireless configuration user interface will
report that the user is not associated to any wireless
networks. Network interface configuration elements,
however, will report that the interface is connected
and configured with an IP address. MacOS X Air-
Port will not request permission to join a previously
unknown wireless network, but will correctly report
that it is connected.

While there is a known growth of client-side at-
tacks, there has been a lack of knowledge regarding
how they may be realistically used by an attacker to
achieve their objectives. Frequently, client-side at-
tacks are described as being a danger if the attacker
can cause the victim to view a malicious web page
or e-mail. While it is evident that an adversary may
send a large number of e-mails to harvested addresses
within an organization to increase the chances of an
internal user viewing the message and possibly view-
ing the malicious content within, this is in no way
a stealthy attack. Similarly, coercing internal users
to view a malicious web site requires an element of
social engineering. We believe that a wirelessly con-
nected attacker is in the best position to deploy at-
tacks against client-side applications.

We have shown that an attacker can force wire-

less clients within signal range to join an attacker-
controlled network. This opens up a very viable and
dangerous avenue for passively exploiting client-side
vulnerabilities using man-in-the-middle techniques.
Drawing from existing cyber-warfare principles ([11]),
we are calling this scenario medium-range cyber-
warfare. By exploiting the vulnerabilities described
in this paper, we may cause our opponent to join a
wireless network where we control the entire network
environment. Since we control the entire network,
we may leverage this to control the opponent. We
may use this approach to attack any wireless-enabled
clients within range, and we may employ strong wire-
less antennas and transmitters to increase this range.

Many attacks can be easily implemented as fake
services responding to requests by client-side ap-
plications. Bare-bones emulation servers can often
be developed with ease [12] or existing packages
may be modified to exercise vulnerabilities in client
code. For example, while implementing a malicious
POP3 server is quite simple due to the simplicity of
the POP3 protocol, implementing a malicious SMB
server may require modifying an existing implemen-
tation such as the open-source Samba SMB/CIFS
server[13].

With a client associated to the rogue network, cre-
dentials may be captured if the client’s software at-
tempts to automatically connect or re-connect to a
network service. For example, rogue mail servers can
capture credentials from clients connecting to clear-
text mail services such as POP3 and IMAP.

In some cases, the client’s credentials may be used
against the client itself. Older variants of the Mi-
crosoft Networking NTLM authentication mechanism
are vulnerable to a man-in-the-middle attack where
the attacker may proxy the challenge-response proto-
col in order to authenticate as the client to the server.

If a host is compromised, an agent may be placed
on it that yields remote control to the attacker.
The agent will attempt to establish communication
with the attacker whenever a network connection is
present. This effectively gives the attacker access to
all the networks the wireless client has access to, ex-
ploiting the inherent mobility of wireless clients. This
effectively makes the security of every network the
client connects to dependent upon the security of all
other networks they connect to.

Our future work will further explore the vulnera-
bilities in client-side functionality and client mobility
and investigate the construction of a client-side at-
tack toolkit to demonstrate these risks.

9



References

[1] “NYC wireless.” http://www.nycwireless.net.

[2] S. Lohr, “One small step in uphill fight as linux
adds a media player,” The New York Times,
June 28, 2004.

[3] IEEE Computer Society LAN/MAN Standards
Committee, “Wireless LAN medium access con-
trol (MAC) and physical layer (PHY) specifica-
tions,” tech. rep., ANSI/IEEE, 1999.

[4] P. Shipley, “Open WLANs: The
early results of wardriving.”
http://www.dis.org/filez/openlans.pdf.

[5] P. Nobles and P. A. Horrocks, “Vulnerability
of IEEE802.11 WLANs to MAC layer DoS at-
tacks,” in Proceedings of The 2nd IEE Secure
Mobile Communications Forum, Instituion of
Electrical Engineers, 2005.

[6] C. W. Klaus, “Wireless LAN security FAQ.”
http://www.iss.net/wireless/.

[7] M. Moser, “Hotspotter: Automatic wire-
less client penetration.” http://new.remote-
exploit.org/index.php/Hotspotter main.

[8] The Cable Guy, “Windows XP wireless auto
configuration,” Microsoft TechNet, November
2002.

[9] Internet Assigned Numbers Authority,
“RFC 3330: Special-use IPv4 addresses.”
ftp://ftp.internic.net/rfc/rfc3330.txt, Septem-
ber 2002.

[10] S. Leffler, “Multimode atheros driver for WiFi
on linux.” http://madwifi.sourceforge.net.

[11] R. C. Parks and D. P. Duggan, “Principles of
cyber-warfare,” Proceedings of the IEEE Work-
shop on Information Assurance and Security,
pp. 122–125, June 2001.

[12] N. Provos, “A virtual honeypot framework,” in
Proceedings of The 13th USENIX Security Sym-
posium, (San Fransisco, CA), August 2004.

[13] The Samba Team, “Samba.”
http://www.samba.org.

10


