
1

A Versatile Tunneling Interface

Vipul Gupta

vipul.gupta@Eng.Sun.COM

May 15, 1997

1. Introduction
This document describes a software-only network interface, vtunl, capable of

tunneling IPv4 datagrams. Such tunneling is required by the IETF Mobile-IP

protocol [RFC 2002] and may also be used to transport multicast packets across

multicast-oblivious portions of a TCP/IP network. The interface is based on

atun, which is used to tunnel IPv6 packets through an IPv4 network in the

Solaris IPv6 prototype.

2. Basic Operation
Vtunl is a dynamically loadable kernel module for the Solaris 2.x operating

system from SUN Microsystems. The networking code in Solaris is based on

the System V STREAMS framework and protocols belonging to the TCP/IP

protocol suite, e.g. ARP, IP, UDP and TCP, are implemented in neatly separated

modules. Figure 1 shows the basic STREAMS configuration for Solaris. Several

instances of the same module may exist in the system simultaneously, e.g. all

four instances of IP in Figure 1 share the same code. This is emphasized by

enclosing multiple instances of the same module in a light gray rectangle. Note

that IP is configured into the kernel both as a device and a module.

2 A Versatile Tunneling Interface—May, 1997

Figure 1 STREAMS configuration for Solaris TCP/IP.

A vtunl module plumbed between an instance of IP as a driver (/dev/ip) and

another instance of IP as a module (ip) can perform both tunneling (a.k.a.
encapsulation) and detunneling (a.k.a. decapsulation). This is shown in Figure

2(a). In the encapsulating mode, it receives a datagram from the IP module

(after the routing code decides to send the datagram through the tunnel),

inserts an encapsulation header, and passes the new datagram to the IP driver

for rerouting. Vtunl registers with /dev/ip to receive a copy of all

encapsulated packets (e.g. datagrams with the IP protocol field set to

IPPROTO_ENCAP). It strips off the outer IP header and passes the newly

exposed datagram to ip for rerouting. To the IP module above, vtunl appears

as a data link device with a DLPI interface. To the IP driver below, vtunl

appears as a STREAMS module. Like IP, vtunl exhibits dual personality acting

Stream head

user process

Sockets or

User Space

Kernel Space

IP Device IP Device

Stream head

Sockets or

DLPI
Device 1

DLPI
Device 1

TCP
Module

UDP
Module

 XTI/TLI Module XTI/TLI Module

IP Module

DLPI
Device 2

IP Module

ARP
Module

ARP
Module

“dummy” Multiplexor

user process

IP Device = “/dev/ip”
IP Module = “ip”

2. Basic Operation 3

both as a STREAMS driver and module. By I_PLINKing the vtunl stream

under UDP, this plumbing can be made to outlive the user process that created

it.

Figure 2 Three different types of STREAMS involving a Vtunl module.

The plumbing in Figure 2(a) creates a point-to-point interface. Assuming no

other IP Devices are linked under an IP Module, this interface gets the name

“ip0”. Since ip0 is a point-to-point interface, it can be configured with an

address that may already be assigned to another interface, e.g. le0. This

address sharing is desirable so that packets originating at the encapsulating

host and passing through ip0 acquire a source address belonging to one of its

“regular” interfaces.

Datagrams headed to specific destinations can be forced to undergo

encapsulation by setting appropriate routing table entries. The following

example clarifies this further. Suppose ip0 is configured as a point-to-point link

between nobel1 and dummy (using an equivalent of the command ifconfig ip0
nobel1 dummy up). To force packets meant for cali through vtunl, one can add

a new route with the command route add cali dummy 1. At a later time, one

may use the command route delete cali dummy to stop vtunl from receiving

Stream head

user process

IP Device

IP Module

Vtunl
Module

Stream head

user process

DLPI Device

IP Module

Vtunl
Module

Stream head

user process

Device

Vtunl
Module

User Space

Kernel Space

(a) (b) (c)

4 A Versatile Tunneling Interface—May, 1997

packets destined to cali. Table 1 shows how the routing table at nobel1 may

appear after a route is added for cali through dummy. In this table, mpk15-net

is the network connected to nobel1 and rmpk15 is the default router.

Unfortunately, this mechanism is insufficient if encapsulation of broadcast or

multicast packets is also desired since these packets bypass IP routing table

lookups. For example, even if a route is created for 224.159.3.20 through

dummy, packets sent to that multicast address shall not be routed through

vtunl. This situation can be countered by the plumbing shown in Figure 2(b).

A vtunl module plumbed between a DLPI device and an IP module can

subscribe to all multicast and broadcast packets seen by the device; and

encapsulate them on their way up before handing them off to IP for rerouting.

Vtunl has the ability to tunnel packets destined to a specific IP address (or

target) to multiple exit points. The number of tunnel exits and their addresses

are user-configurable. Each target for which encapsulation service is provided

is represented by the encap_target data structure and each tunnel exit is

represented by the t_exit structure. The important fields in these structures

are shown below:

struct encap_target {
u32 encap_target_addr; /* target’s IPv4 address */
short int exit_count; /* no. of exits for this target */
u16 encap_target_encapflags[MAXEXITCOUNT];
 /* these flags control encapsulation type */
struct t_exit *encap_target_exit[MAXEXITCOUNT];

}

Table 1 Sample routing table entries at encapsulating host nobel1.

Destination Mask Gateway Device

127.0.0.1 255.255.255.255 127.0.0.1 lo0

cali 255.255.255.255 dummy

dummy 255.255.255.255 nobel1 ip0

mpk15-net 255.255.255.0 nobel1 le0

224.0.0.0 240.0.0.0 nobel1 le0

default 0.0.0.0 rmpk15

2. Basic Operation 5

struct t_exit {
u32 t_exit_addr; /* IPv4 address of the tunnel exit */
int t_exit_ref_count; /* no. of targets using this exit */
u16 t_exit_pmtu; /* current tunnel MTU */
u16 t_exit_maxpmtu; /* current bound on Path MTU */
u16 t_exit_state; /* other softstate information */

}

These structures are maintained in separate hash tables (encap_table and

texit_table , respectively) hashed on their 32-bit address fields. The

maximum number of tunnel exits that may be simultaneously associated with

a target is MAXEXITCOUNT. When different targets request a common tunnel

exit for encapsulation, they share the latter’s t_exit structure. If vtunl

receives a packet for a destination that does not have a encap_target
structure, encapsulation is denied and the packet dropped.

Figure 2 explains the relationship between these data structures. Part (a) shows

four hosts MH1 through MH4 that have requested encapsulating service.

Datagrams for MH1 and MH4 are to be sent to FA2 after encapsulation.

Datagrams for MH2 are to be tunneled to FA3 and those for MH3 are to be

tunneled to both FA1 and FA2. Part (b) shows the corresponding

6 A Versatile Tunneling Interface—May, 1997

encapsulation related data structures. The figure assumes that the 32-bit

addresses for MH3 and MH4 hash to the same value and the same is true for

FA1 and FA2.

Figure 3 Data structures used in vtunl’s internal configuration.

A target can specify different types of tunneling for each of its exit points.

Tunneling behavior is controlled by the encapsulation flags stored in the

encap_target structure, e.g. one may specify IPIP encapsulation or Minimal

encapsulation. Currently, only IPIP tunneling is supported but the flag field

allows additional functionality to be incorporated seamlessly. Flags may even

be used to identify which protocol/program, e.g. Mobile-IP, mrouted created

the entry -- this could be used to prevent one program from flushing entries

created by another.

FA1 FA2

FA3

MH1

MH4

MH2

MH3

(a)

encap_table

texit_table

encap_target

t_exit

--->

--->

--->

--->

--->

ref:1 ref:3
FA1 FA2

FA3

ref:1

--->

--->

MH1

MH2

MH3 MH4

cnt:1

cnt:2

cnt:1

cnt:1

(b)

decap_table

---> --->

--->
MH1

MH3 MH4

(c)

decap_target

3. Configuration Notes 7

Instead of providing decapsulation service indiscriminately, vtunl can be

configured to serve only selected hosts. Vtunl maintains a hash table called

decap_table for this purpose. When selective decapsulation is turned on,

only hosts that have a decap_target structure in this table are offered

decapsulation service. Figure 1 (c) shows this hash table for FA2.

Under Solaris, any module subscribed to IP protocol x (other than

IPPROTO_UDP and IPPROTO_TCP) automatically receives a copy of all ICMP

messages generated in response to protocol x datagrams. Vtunl modules

subscribed to encapsulating protocols, e.g. IPPROTO_ENCAP, use these ICMP

messages to participate in tunnel soft-state management (as outlined in RFC

1933, “IPv6 Transition Mechanisms”). The vtunl code ensures that at most one

instance is subscribed to IPPROTO_ENCAP at any given time.

Note – The vtunl driver is able to process only those packets that are sent

through ip0, e.g. if the second routing entry (shown in Table 1) is deleted, the

presence or absence of a encap_target structure for cali in vtunl’s internal

configuration becomes irrelevant.

3. Configuration Notes
There are two classes of vtunl-specific ioctl commands depending on the data

structures they affect. Commands VTUNL_SETCONF_TRANSPORT,

VTUNL_SETCONF_DLSUSER and VTUNL_GETCONF operate on instance-

specific data structures; only the vtunl instance in the stream targeted by the

ioctl is affected. Other commands affect global data structures shared across

all vtunl instances.

All vtunl commands must be issued using the I_STR ioctl (see streamio(7))

call. The call must be made on a stream in which vtunl appears directly

underneath the stream head (see Figure 2(c)). Doing so prevents an intervening

module (e.g. IP) from misinterpreting vtunl-specific commands. For example,

a VTUNL_GETCONF ioctl for the vtunl instance shown in Figure 2(a) must be

issued before the IP module is pushed.

Almost all commands use a vtunl_req structure as argument. This structure

is defined as a union and has several fields including the following:

u32 vr_target_addr;
u32 vr_t_exit_addr;

8 A Versatile Tunneling Interface—May, 1997

u16 vr_encap_flags;
u16 vr_decap_flags;
u32 vr_address;
u32 vr_addr_mask;
u_char vr_ppa;
u_char vr_ip_protocol;
u16 vr_mtu_bound;

The first two specify 32-bit IPv4 addresses and the next two specify flags that

affect the encapsulation/decapsulation service provided. The lower byte of the

encapsulation flags could be the Mobile-IP registration flags S,B,D,M,G,V,x,x

respectively. For now, only the S bit is supported. If the S bit is set, prior

mobility bindings are retained. The vr_mtu_bound field is used by the

VTUNL_MAXPMTU_{S,G}ET commands. The remaining fields are used for the

two VTUNL_SETCONF commands.

Table 2 describes the interface-specific ioctl commands defined for vtunl. The

VTUNL_GETCONF command uses a vtunl_conf structure with the following

fields:

#define MAXMNAMESZ 11
struct vtunl_conf {

 int type; /* vtunl instance type */
 u_char ppa; /* ppa of DLS provider */
 u_char ip_protocol; /* ip protocol subscribed to */
 u32 address; /* IP addr of DLS provider or
 tunnel src */
 u32 addr_mask; /* netmask assigned to DLS provider */
 ulong last_req; /* last request sent to ip or DLS

Table 2 Instance-specific ioctls for the Vtunl interface.

Command Parameters Description

VTUNL_SETCONF_TRANSPORT vr_address

vr_ip_protocol

Configure a vtunl instance of

the type shown in Fig. 2(a).

vr_ip_protocol is the protocol

subscribed to, e.g. IPIP.

VTUNL_SETCONF_DLSUSER vr_address

vr_addr_mask

vr_ppa

Configure a vtunl instance of

the type shown in Fig. 2(b),

e.g. for le0, vr_ppa is 0.

VTUNL_GETCONF vtunl_conf Get information about a

specific vtunl instance.

3. Configuration Notes 9

 provider */
 ulong last_resp; /* last response from ip or DLS
 provider */
 ulong state; /* as determined by msg with ip or
 or the DLS provider below */
 char modname[MAXMNAMESZ+1];
 /* either "ip" or name of DLS provider, e.g. "le" */

};

10 A Versatile Tunneling Interface—May, 1997

Table 3 lists the global ioctl commands, their parameters and a brief

description. The VTUNL_ENCAP_OK command is useful in determining

Table 3 Global ioctl commands for the vtunl interface

Command Parameters Description

VTUNL_ENCAP_ADD vr_target_addr

vr_t_exit_addr

vr_encap_flags

Provide encapsulation for

target_addr using vr_t_exit_addr

as exit, encapsulation flags

SBDMGV are specified in the lower

byte of target_encap_flags.

VTUNL_ENCAP_REM vr_target_addr

vr_t_exit_addr

Cancel encapsulation service. If

vr_target_addr is 0, cancel all

encapsulation services, if

t_exit_addr is 0, stop encapsulating

for specified target else stop

encapsulating only for the given

combination.

VTUNL_ENCAP_OK vr_target_addr Returns 0 if encapsulation service

is offered to specified address,

ENXIO otherwise.

VTUNL_ENCAP_SIZE integer Returns the minimum buffer size

required for a successful

VTUNL_ENCAP_GET.

VTUNL_ENCAP_GET character buffer Dumps encapsulation

configuration into buffer.

VTUNL_DECAP_ADD vr_target_addr

vr_decap_flags

Provide decapsulation if specified

address appears in the inner

datagram as indicated by the flags.

Possible values of the flags are

DECAP_IF_{SRC|DST|EITHER}.

A zero target enables

decapsulation of ALL datagrams.

VTUNL_DECAP_REM vr_target_addr Cancel decapsulation for specified

address.

VTUNL_DECAP_OK vr_target_addr Returns 0 if decapsulation is

provided for specified address,

ENXIO otherwise.

3. Configuration Notes 11

whether a routing table entry through ip0 is required for vr_target_addr on the

encapsulating host.

The buffer returned by a successful VTUNL_ENCAP_GET contains the

following: number of bytes filled (4 bytes), number of encapsulation targets (4

bytes), for each target, its address (4 bytes), number of tunnel exits (4 bytes)

and the address of each exit (4 bytes), number of tunnel exits (4 bytes), for each

exit, its address (4 bytes), current PMTU estimate (2 bytes), maximum PMTU (2

bytes) and state (2 bytes).

The buffer returned by a successful VTUNL_DECAP_GET contains the

following: number of bytes filled (4 bytes), value of vtunldecapall (4 bytes)

which currently is used as a boolean variable (TRUE only if all datagrams are

decapsulated), number of decapsulation targets (4 bytes), and for each target,

its address (4 bytes) and flags (2 bytes).

Note – All IPv4 addresses must be passed in network byte order. For the

VTUNL_ENCAP_ADD and VTUNL_ENCAP_REM commands, vr_target_addr
may be set to DEFAULT_ADDR (defined in vtunl.h). An entry created with

this target address is used to encapsulate packets for all those destinations that

do not have their own entries in the encap_table.

VTUNL_DECAP_SIZE integer Returns the minimum buffer size

required for a successful

VTUNL_DECAP_GET.

VTUNL_DECAP_GET character buffer Dumps decapsulation

configuration into buffer.

VTUNL_DEBUG_SET integer (0= quiet,

3 = most verbose)

Set debug level.

VTUNL_DEBUG_GET integer Get debug level.

VTUNL_MAXPMTU_SET vr_address,

vr_mtu_bound

Set an upper bound on the Path

MTU associated with the tunnel

exit specified in vr_address.

VTUNL_MAXPMTU_GET vr_address,

vr_mtu_bound

Get the PMTU upper bound

associated with given address.

Table 3 Global ioctl commands for the vtunl interface

Command Parameters Description

12 A Versatile Tunneling Interface—May, 1997

4. Users’ Guide
This section describes the vtunl installation and testing procedure which

requires superuser privileges (the process has been tested on Solaris 2.5.1 and

Solaris 2.6). While we have been using vtunl for over six months, it should still

be considered an experimental module and users should backup all significant

data before using it. We also recommend backing up the original kernel image

using the command cp -r /platform/<arch>/kernel
/platform/<arch>/kernel.orig (<arch> is sun4m for a SparcStation2, sun4u for

Ultra1 etc. If you are unsure of what to use for <arch>, use the output of the

uname -i command). If the working kernel is ever corrupted, the original can

be booted by specifying boot kernel.orig/unix at the boot prompt.

To install vtunl, copy the vtunl and vtunl.conf files to

/platform/<arch>/kernel/drv and execute add_drv vtunl. The add_drv (1M)
command is used to add a new device driver to the system. Use modinfo |
grep vtunl to verify that vtunl has been successfully loaded. The output

should indicate two entries for vtunl -- one as a module and the other as a

driver. The command add_drv vtunl needs to be executed afresh each time the

machine is booted. The rem_drv (1M) command can be used to remove a

device driver from the system.

The program vtunlconf can be used to test vtunl. It creates multiple streams

containing the vtunl module. One stream plumbs vtunl between /dev/ip and

ip, others plumb vtunl between DLPI devices and ip and still another

plumbs vtunl directly underneath the stream head. This last stream is used for

issuing global vtunl ioctls. The vtunlconf program (along with /sbin/route)

allows a user to control vtunl’s behavior interactively. The vtunlconf program

offers on-line help, and a UNIX style manpage is also available. Tunneled

packets produced by vtunl can be monitored by programs such as snoop or

tcpdump (encapsulated datagrams have the protocol field in their outermost IP

header set to 4).

5. Possible Enhancements
Supporting registration lifetimes within vtunl can reduce the amount of state

maintained by user level programs like the Mobile-IP agent daemon. The

STREAMS framework has built-in support for asynchronous event notification,

e.g. a user process can issue the I_SETSIG ioctl call on a stream to receive a

SIGPOLL signal whenever a M_PCPROTO message appears at the stream

head. The vtunl code can be altered to send such a message to one or more

5. Possible Enhancements 13

connected streams when a registration expires. It may be desirable to send

these notifications on just one of the streams involving the vtunl. This special

stream may be identified by sending a particular ioctl command (e.g.

VTUNL_NOTIFY) through it. As part of processing this command, the vtunl

code can mark that stream for special handling, e.g. it can store the queue

argument passed to its ioctl handler and use that as an argument to qreply()
for sending the M_PCPROTO message. If registration lifetimes are supported

within vtunl, timer management should be based on an event list.

The DEFAULT_ADDR concept used in VTUNL_ENCAP_{ADD, REM} can be

generalized by associating netmasks with each encap_target address.

Netmasks provide a convenient mechanism for specifying multiple IP

addresses that need to be processed in the same manner.

14 A Versatile Tunneling Interface—May, 1997

