
Filters for Mobile IP

Page 1

10 July 2003 ComNets, University of Bremen

Filters for Mobile IP Implementation

OVERVIEW 2

SUNLABS MOBILE IP 3

MULTIPLE SIMULTANEOUS BINDINGS FOR MOBILE IP 7

DETAILED MOBILE NODE CHANGES 7
DETAILED MOBILITY AGENT CHANGES 9

FILTERS FOR MOBILE IP 10

DETAILED MOBILE NODE CHANGES 12
DETAILED HOME AGENT CHANGES 16
REVERSE FILTERS WITH FILTERS FOR MOBILE IP 19
EFFECTING FILTER BEHAVIOUR ON LINUX 19
CURRENT STATUS 22

CONFIGURING FILTERS IN SUNLABS MOBILE IP 23

REFERENCES 26

APPENDIX 27

SAMPLE AGENT CONFIGURATION FILE 27
SAMPLE MOBILE NODE CONFIGURATION FILES 29

Filters for Mobile IP

Page 2

10 July 2003 ComNets, University of Bremen

Overview

SunLabs Mobile IP software is a Mobile IP implementation for IPv4 networks, as specified in
RFC 2002 (1). It consists of 2 separate software components, called the Agent software and
the Mobile Node software. It is a Linux based application and at present it is able to provide
Mobile IP support on single network interface of a mobile node. Modern day mobile nodes
have more that one network interface and requires that all these be usable when it is possible.
These interfaces might be connected through different network technologies and can be up or
down at different times. For example, a WLAN connection might not be active when the user
of a mobile node is travelling on a Highway. The only connection that might be possible
would be a GPRS connection.

Considering the same example, GPRS is usually expensive to use, compared to WLAN
connection. Therefore the mobile node should be able to use these connections in a more
inteligent maner, considering not only the cost, but many other criteria. Filters for Mobile IP
(3) is a specification that specifies how a mobile node can be made to use it’s network
interfaces based on different criteria.

This document explains the implementation of the following capabilities on the SunLabs
Mobile IP software.

• Multiple simultaneous (concurrent) bindings
• Filtering

It explains the current operation of the software, what was done to handle multiple
simultaneous bindings, what was done to handle Filters for Mobile IP and finally, how the
software can be operated.

Filters for Mobile IP

Page 3

10 July 2003 ComNets, University of Bremen

SunLabs Mobile IP

SunLabs Mobile IP enables Mobile IP support for environments that require mobility support.
It consists of 2 separate software components. They are,

 Agent software
 Mobile Node software

The Agent is setup to run on a server of a network which requires Mobile IP support. The
agent can act as a Home Agent or a Foreign Agent or as both (1,2). When the server is
configured as a Home Agent, it should intercept and tunnel data to the mobile nodes that
belong to it’s network, when they are connected to the Internet through some other Mobile IP
capable network. The data is orginally sent to the Foreign Agent in the network to which the
mobile node is connected, who in turn forwards it to the mobile node. When the server in a
network acts as a Foreign Agent, it should accept data sent on behalf of the mobile node and
forward then to the mobile node.

The Mobile Node software is to be run on the mobile node. This software configurs the
mobile node to be Mobile IP capable. When a mobile node is connected to a foreign network,
it activates the Mobile IP operation to make connections with the Home Agent and when it is
in the home network, reverts back to nomal IP behaviour. The Mobile Node software is able
to handle the Foreign Agent Care-of-Address method as well as the Co-located Care-of-
Address methods.

SunLabs Mobile IP is a user space application written to be executed in Unix based
environments. This software was originally written for the Sun Solaris environment. Later it
was ported to Linux 2.2. This software was changed by ComNets to handle Fast Handoff
mechanisms (5) and the current Comnets version of this software is 0.83.

The Agent and the Mobile Node software have been developed in the C language and
contains many IOCTL calls to manipulate the IP behaviour on the Linux kernel. The Agent
software has the following program structure,

Filters for Mobile IP

Page 4

10 July 2003 ComNets, University of Bremen

Initialize

getAndDispatchMessages

doPeriodicTasks

screenUDPPackets

screenICMPPackets

FAprocessRegRequest

HAprocessRegRequest

FAprocessRegReply

maSendAdvertisements

readConfigInfo

haAgeBindings

faAgeUnreachable

initVariables

faAgeVisitors

Loop Continuously

SunLabs Agent

The basic structure of the Agent software is to loop continuously and process any messages if
available. While iterating around this loop, it regularly performs a set of maintenance tasks.
The time duration of performing these maintenance tasks is defined in the configuration file.
The application has the following data structures to manage the operation.

• Table of interfaces on the server that are clssified as providing Mobile IP capabilities.

These interfaces should be on the networks which host the different mobile nodes. This
information is obtained from the configuration file.

• Table to mainatain the visitors to the Mobile IP capable network. This table is valid only

for Agents that act as Foreign Agent.

• Table of Home Agents from whom ICMP unreachable message was recived, recently.

• Table for each mobile node for which it provides Home Agent services. This information

is read from the configuration file. Only valid for a Home Agent.

• Table for holding currently active bindings for each mobile node visiting some other

Mobile IP capable network. Only valid for a Home Agent.

The Mobile Node software has the following program structure.

Filters for Mobile IP

Page 5

10 July 2003 ComNets, University of Bremen

Initialize

getAndDispatchMessages

doPeriodicTasks

MNprocessRegReply

MNprocessAgentAdv

readConfigInfo

updateState

mnUpdateInterfaces

initVariables

mnAgeHAs

Loop Continuously

SunLabs Mobile
Node

decideStateTransition
startHomeAction

startForeignAction

startColocatedAction

startUnknownAction

startIsolatedAction

mnAgeLocalMAs

mnAgeRegistrations

mnStateTasks

This too, loops indefinitely to perform message processing, state transition and update of the
available network interfaces. While performing these, it also does some maintenance tasks
repeatedly when a configuration file defined duration elapses. Following are the data
structures it holds.

• Table to hold information related to the different network interfaces. They can be
from wirelined (eth0, etc.) to wireless or logical (ppp0, etc.). Theses interfaces are
monitored for any Agent Advertisement ICMP messages. If the IP address of the
interface is the home address it starts sending Agent Solicitation ICMP messages.

• Table to hold the different Mobile IP supporting Agents from whom it recived

advertisements. This table is updated when no Agent Advertisments are heard.

• Table of Home Agents valid for this mobile node. Some are defined in the
configuration file, while it can also identify these dynamically.

• Table to hold the different registrations sent to the Home Agent.

• Structure to hold the current state of the mobile node. The sate can be,

1. Foreign – If the mobile node is connected to a foreign network that provides
Mobile IP support (MN uses a foreign agent’s address).

2. Co-located – If the mobile node is connected to a foreign network that does
not provide Mobile IP support. The mobile node in this case should have
obtained some address from the visiting network (thrugh DHCP, PPP).

3. Unknown – If the mobile node has active network interfaces, but is not
connected to any network.

Filters for Mobile IP

Page 6

10 July 2003 ComNets, University of Bremen

4. Isolated – If the mobile node has no active interfaces.

In both applications (Mobile Node and Agent), all operating system calls are placed in 2
separate modules. Currently these modules are available for each platform (Solaris and Linux)
that the software is capable of working. They contain IOCTL functions as well as direct exe
commands that manipulate the IP environment. This software uses the following Kernel level
operations,

• Configuring interfaces
• Creating IPIP tunnels
• Setting route entries
• Requesting Proxy ARPing

Filters for Mobile IP

Page 7

10 July 2003 ComNets, University of Bremen

Multiple Simultaneous Bindings for Mobile IP

A mobile node can have many network interfaces. These interfaces can be using different
bearer technlogies. For example, one interface can be a wireless LAN connection while
another can be a GPRS connection. These bearer technologies have differing characteristics
that make them suitable at different times. Considering the same example, when a user is out
on a moving train, the only connection possible might be GPRS. But at or close to the
working place, a user can have access to Wireless LANs. Similarly, when all possible
interfaces are active, the user might wish to use them for different activities, simultaneously,
considering different factors such as bandwith requirement, cost, etc. This requires the
mobile node to maintain a binding for each of the active interfaces.

The Mobile IP (ref nnn) specifies that a Registration Request of a mobile node should enable
the S bit to indicate that it wants to hold multiple simultaneous bindings. This means, that
when the Registration Request is received by the Agents (Home or Foreign), they do not
purge any other bindings held for the same mobile node but, create a new binding. When
there are multiple bindings of mobile node registered at the Home Agent, the RFC indicates
that all packets destined to the mobile node should be multiplicated.

The SunLabs Mobile IP software does not allow to have multiple bindings for a mobile node.
The Mobile Node software does not set the S bit in it’s Registration Request and the Agent
software also does not check for to see whether the S bit is set.

To make the SunLabs Mobile IP software handle multiple interfaces, the following changes
were required. (in summary)

 Agent (Home and Foreign)

• React to the S bit setting in an incomming registration request. For
updating the binding list as well as removal of bindings

 Home Agent

• Multiplicate all Mobile Node destined packets to all the active bindings

 Mobile Node

• Change the data structures to allow the maintenance of multiple states, one
for each active interface

• Relate interface and the data structures to assign the incomming or
outgoing Mobile IP messages

• Enable S bit when sending Registration Requests

Detailed Mobile Node Changes

Following is the changed program structure of the Mobile Node software of SunLabs Mobile
IP. (i.e. functions with a rectangle around them)

Filters for Mobile IP

Page 8

10 July 2003 ComNets, University of Bremen

Initialize

getAndDispatchMessages

doPeriodicTasks

MNprocessRegReply

MNprocessAgentAdv

readConfigInfo

updateState

mnUpdateInterfaces

initVariables

mnAgeHAs

Loop Continuously

SunLabs Mobile
Node

decideStateTransition
startHomeAction

startForeignAction

startColocatedAction

startUnknownAction

startIsolatedAction

mnAgeLocalMAs

mnAgeRegistrations

mnStateTasks Loop for each interface

Get Next Interface Sequence

The data structure meant to hold the state of the mobile node was changed to an array. Each
of the elements represent one active interface. If no interfaces are active, then the 1st element
of the array is taken to handle the state. Following is the new data structure introduced.

typedef struct is {
 char ifaceName[MAX_IFNAME_LEN];
 u32 COAddr;
 mnState currentState;
} InterfaceState;

When receiving Agent Advertisements or Registration Replys, identification was made to
what interface through which they were received. This was required to update the data
structures related to the binding specific to a interface. The following new functions were
added.

int getIfcStateSeqFromName(char *ifaceName, InterfaceState ISTable[])

Return the sequence number of the element in the state data structure related to the
given interface name.

int getIfcStateSeqFromCOA(u32 COAddr, InterfaceState ISTable[])

Return the sequence number of the element in the state data structure related to the
given care-of-address of a binding.

int localMAAvailable(char *ifaceName, LocalMaEntry localMaTable[])

Checks if a local Foreign Agent is available for the given interface. This is reuired to
determine if the interface is bound in Co-located mode or Foreign Agent mode.

Filters for Mobile IP

Page 9

10 July 2003 ComNets, University of Bremen

int getNextIfcStateSeq(int lastISSeq, InterfaceState ISTable[])

Return the sequence number of the next intrface to consider for changing state.
Finding the next sequence number is done in the main loop of the software.

int isValidInterface(char *ifaceName, IfaceEntry ifaceTable[], int
ifaceTableSize)

Checks to see if an interface is still active in the interface table. This is required to
update the state table.

int getIfaceAtHome(InterfaceState ISTable[])

Checks the state data structure to see if any interface is currently in the Home state. If
an interface is in the Home state, all other active interfaces are not considered by the
software.

int ifaceInColocated(InterfaceState ISTable[])

Checks the state data structure to see if any interface is currently in a Co-located
mode. This is required to set the default route correctly when there are more that one
active interface.

A Registration Request is sent to the Mobility Agents (Home agent, Foreign agent) when a
interface becomes active. The formation of the Registration Request message was changed to
include the S bit enabling so that the Mobility Agents will not remove any bindings related to
the Mobile Node.

The software scans the active interface list to update the interface list data structures. This
routine was changed to also update the state data structures to insert the newly available
interfaces and to remove any dissapeared interfaces.

Detailed Mobility Agent Changes

The major change in the Agent software was to allow the acceptance of multiple bindings per
Mobile Node. This behaviour was only activated if an incomming Registration Request had
the S bit set. If the S bit is not set, the Agent will remove all the bindings for the Mobile node
before inserting the new binding.

The secondary change required was the implementation of packet multiplication action by the
Home Agent. This activity was NOT programmed as it would require changing when
implementing Filters for Mobile IP (next section)

Filters for Mobile IP

Page 10

10 July 2003 ComNets, University of Bremen

Filters for Mobile IP

A mobile node can have multiple network interfaces. As explained and implemented in the
Multiple Simultaneous bindings for Mobile IP section, the standard Mobile IP indicates that
all IP traffic to such mobile nodes should be multiplicated to all the interfaces. This means of
operation is not very useful as this prevents the use of these network interfaces in a intelligent
manner. For example, considering the same example in that section (WLAN & GPRS
connections), when a WLAN connection is possible, it would be logical to stop any
communication over the GPRS line, as this means is costly. But since Mobile IP specifies
that all IP traffic should be multiplicated, this differentiation will not be able to be performed.

Similarly, there can be many such considerations as shown above, to differentiate IP traffic
that is destined to the mobile node. They could be bandwidth, load balancing, special
considerations such as video over a selected interface, etc.

Filters for Mobile IP is solution for this problem where the mobile node can instruct the
Binding Agents to which it registers, to send incomming IP traffic though its active network
interfaces, selectively. Filters for Mobile IP specifies the sending of a set of filtering
instructions attached to the Registration Request as extensions. Once, the Binding Agent
(Home Agent, Foreign Agent or other Agents related to HMIP (4)) receives these extensions,
if it is a Filtering Agent, it sets its routing so that the traffic destined to the mobile node is
differentiated as indicated in the filters.

The filters that are sent with a Registration Request consist of 3 distinct components. They
are,

• Filter Management Data
• Filters
• Filter Modules

A Filter Module defines one criteria to check by the Filtering Agent when routing data to a
specific interface of the mobile node. For example one such criteria would be the IP address
of a correspondent node with which the mobile node is communicating.

A Filter is a collection of such Filtering Modules. I.e. a Filter can have multiple criteria. If a
Filter has multiple criteria, the relationship between each criteria is considered as AND.

A Filter Management Data (FMD) is the instruction information about the Filters being sent
with a Registration Request. Each Filter should be followed by a Filter Management Data
component. A FMD contains the following information,

• Target – What needs to be done when a IP packet satisfies the condition specified in
the Filter (route to an interface, drop packet silently, etc.)

• Action – What to do with the Filter being sent (can be added to the existing Filters,
replace an existing filter, etc)

• Index – If the Action relates to a existing Filter (replace, delete, etc), then the
sequence number of the Filter.

Filters for Mobile IP

Page 11

10 July 2003 ComNets, University of Bremen

A single Registration Request can contain any number of Filters. The interface of the mobile
node to which the packets should be routed (when criteria satisfies), is the Care-of-Address of
the Registration Request through which the Filter was received by the Filtering Agent. When
there are more than one Filter for a mobile node, the relationship between the Filters are OR.
The Index value assigned to a Filter is also taken as the priotity of the Filter, i.e. it is the order
in which the conditions (Filters) are evaluated. If one condition statisfies, the CoA associated
with that filter is considered for routing the IP packet. The Index values are 0 based and the
highest priority is recived by the lowest numbered Filter. The following diagram depicts the
structure and the relationship of Filters.

Registration

Request

MIP Security
Extensions

Filters

Filter 0

FMD

Filter 1

FMD

Filter Module

Filter Module

Filter Module

Filter Type

Length

Data

Contents of a Filter
Module

Contents of a Filter

The total UDP packet
sent by the Mobile Node

when sending a
Registration Request

Contents of the Filter
Area of the Registration

Request

Filters for Mobile IP specifies a group of filtering criteria through which different IP traffic
flows can be identified and routed. Following are these filter criteria,

• TOS Filter – This filter allows the identification of the TOS value of an IP packet
destined to the mobile node.

• Protocol Filter – Used to filter IP traffic based on the protocol field of an IP packet
that is destined to the mobile node.

• Source Address Filter – Used to filter IP traffic based on the source IP address in an
IP packet that is destined to the mobile node.

• Source Network Filter – Filters IP packets destined to the mobile node based on the
network of the source address of a packet.

• Source Port Filter – Filters IP packets destined to a mobile node by using the source
port number in the IP packet. This has to be used in conjunction with the Protocol
Filter.

• Source Port Range – This filter checks for a conformance to a source port range in
the IP packet. This too, is used in conjunction with the Protocol Filter.

Filters for Mobile IP

Page 12

10 July 2003 ComNets, University of Bremen

• Free-Form Filter – This is a filter that allows any part of an IP packet to be used to
filter. This filter allows the definition of an offset within the IP packet and the number
of bytes there-of, to check.

• Destination Port Filter – Filters IP packets destined to a mobile node by using the
destination port number in the IP packet. This has to be used in conjunction with the
Protocol Filter.

• Destination Port Range – This filter checks for a conformance to a destination port
range in the IP packet. This too, is used in conjunction with the Protocol Filter.

The Filtering Agent is the entity that identifies the traffic based on the above classified filter
types and routes them to the mobile node. But there can be instances when an IP packet does
not conform to any of the filtering criteria specified in the Filter list. In such a situation, all IP
traffic should be routed through a Default Filter. The Default Filter is the filter created by
Filtering Agent to pass IP traffic, when other filters do not satisfy. A default filter is found in
the following manner.

1. If a binding exist without any filters, use that CoA for the Default Filter
2. Else use the the first binding’s CoA for the Default Filter

SunLabs Mobile IP software required changes in the Agent component as well as the Mobile
Node component to effect the Filters for Mobile IP behaviour. The changes are as follows
(summary).

Mobile Node
• Read & display filter definition from a configuration file
• Attach the relevant filters in Registration Requests
• Re-attach the filters when a handoff occurs for any interface
• Apply reverse filters locally

Agent

• Extract, update & display filters from received Registration Requests
• Find the Default Filter
• Apply the filters as indicated

Detailed Mobile Node Changes

The main configuration file of the Mobile Node software includes a flag called FilterStatus
that indicates whether the software needs to consider about reading a filter definition file or
not (1 or 0). The filter definition file contains the different filters (see Appendix for definition
formats) associated with each of the network interfaces that is active or might come up in the
future. Once read they are kept in an internal array through which they are printed out for the
user to view. Following are the newly introduced functions to perform this activity.

int readFilterInfo(FILE *ffd)

Reads the filter information from a file named /etc/mipmn-filters.conf If the filter file
contains any inconsistancies, the invokation of the software is totally terminated.

Filters for Mobile IP

Page 13

10 July 2003 ComNets, University of Bremen

void showFilterInfo()
Displays the filter information read from the /etc/mipmn-filters.conf

The following data structures were introduced to hold filter information on the Mobile node
software.

typedef struct filtermodule {
 int filterType;
 char *filterPtr;
} FilterModule;

typedef struct filter {
 int filterModuleCount;
 FilterModule filterModules[MAX_FILTER_MODULES_PER_FILTER];
 u32 boundCoA;
 int target;
 char boundIfaceName[MAX_IFNAME_LEN];
 int seq;
} Filter;

The above two structures are to hold general information about Filters and Filter Modules.
The bottom structures define the data structures for each of the filter criteria types.

typedef struct bafextdatadata {
 int DSCP;
} BAFExtData;

typedef struct protoextdata {
 int protoNum;
} ProtoExtData;

typedef struct srcaddrextdata {
 u32 srcAddr;
} SrcAddrExtData;

typedef struct srcnetextdata {
 u32 srcAddr;
 u32 srcNetMask;
} SrcNetExtData;

typedef struct srcportextdata {
 short int portNum;
} SrcPortExtData;

typedef struct srcportrangeextdata {
 short int minPortNum;
 short int maxPortNum;
} SrcPortRangeExtData;

typedef struct freeformextdata {
 short int offset;
 int length;
 char value[MAX_FREEFORM_VAL_SIZE + 1];
 char mask[MAX_FREEFORM_MASK_SIZE + 1];
} FreeFormExtData;

typedef struct dstportextdata {

Filters for Mobile IP

Page 14

10 July 2003 ComNets, University of Bremen

 short int portNum;
} DstPortExtData;

typedef struct dstportrangeextdata {
 short int minPortNum;
 short int maxPortNum;
} DstPortRangeExtData;

The following structure is used to hold what filters are required to be retransmitted. A filter is
eligible for retransmission under the following two conditions.

• When an interface specified in one or set of filters become active
• When a handoff occurs for an interface.

typedef struct filterop {
 int action;
 int seq;
 u32 boundCoA;
 char boundIfaceName[MAX_IFNAME_LEN];
} FilterOp;

Once the filters are transmitted and locally applied, this structure is initialized.

Following fuctions where introduced in a new source file called filters.c, to effect the
attaching and effecting of filters on the mobile node.

int appendFilterExt(unsigned char buffer[], int buflen, Filter fs[], int
fsCnt, FilterOp fo[], int *foCnt, char *ifcname)

Appends the filters to a Registration Request if there are any filters available to
transfer. Whether a filter needs to be transferred or not is dependent on the data in the
FilterOp structure.

int setFilterForHomeBinding(Filter fs[], int fsCnt, FilterOp fo[], int
*foCnt, char *ifcname)

When a mobile node is connected to the home network (i.e. when in HOME state), all
actions of filtering should be terminated. This functions makes sets the FilterOp table
to send a FLUSH all filters instruction.

int setFilterForNewBinding(Filter fs[], int fsCnt, FilterOp fo[], int
*foCnt, char *ifcname)

When a network interface of a mobile node acquires a new state other that HOME (i.e.
FOREIGN or COLOCATED), this function sets the FilterOp table to transmit all the
filters associated with the handoff occuring network interface.

int applyReverseFilters(Filter fs[], InterfaceState ist[])

This function calls the routing functions of the mobile node to set the opposite of the
Filters to effect Revers Filtering on the mobile node. Reverse Filters are the opposite
of the defined filters, which are applied on the mobile node to make the outgoing IP
traffic use the same network interfaces.

int isFilterAppliable(int elem, Filter fs[], InterfaceState ist[])

This function determines if a filter is appliable as a reverse filter. Certain filters such
as user defined Default Filters are not appliable on the mobile node.

Filters for Mobile IP

Page 15

10 July 2003 ComNets, University of Bremen

u32 getValidRouterAddr(char *ifaceName, InterfaceState ist[])

This function returns the Gateway used in the a Binding associated with the specified
interface. This is required to set the routing entries of Reverse Filters.

void deleteAllFilters(Filter fs[])

This function calls the individual filter delete function to delete all the filters active at
the mobile node. This deletion is required when the mobile node wants to re-apply
filters or when the mobile node is connected to the home network (HOME status).

As indicated above, filters are attached to the registration request when sending them to the
Filtering Agent. The following are the data structures used to place filter information to send
with a Registration Request.

typedef struct controlext {
 unsigned char type;
 unsigned char length;
 unsigned char flags;
 unsigned char idx;
} controlExt;

typedef struct bafext {
 unsigned char type;
 unsigned char length;
 unsigned char DSCP;
} bafExt;

typedef struct protoext {
 unsigned char type;
 unsigned char length;
 unsigned char protoNum;
} protoExt;

typedef struct srcaddrext {
 unsigned char type;
 unsigned char length;
 unsigned char srcAddr[4];
} srcAddrExt;

struct srcNetEntry {
 unsigned char srcAddr[4];
 unsigned char srcNetMask[4];
};

typedef struct srcnetext {
 unsigned char type;
 unsigned char length;
 struct srcNetEntry srcNet;
} srcNetExt;

typedef struct srcportext {
 unsigned char type;
 unsigned char length;
 unsigned char portNum[2];
} srcPortExt;

Filters for Mobile IP

Page 16

10 July 2003 ComNets, University of Bremen

struct portRangeEntry {
 unsigned char minPortNum[2];
 unsigned char maxPortNum[2];
};

typedef struct srcportrangeext {
 unsigned char type;
 unsigned char length;
 struct portRangeEntry portRange;
} srcPortRangeExt;

typedef struct freeformext {
 unsigned char type;
 unsigned char length;
 unsigned char offset[2];
 unsigned char valueNmask[(MAX_FREEFORM_VAL_SIZE/2) +
(MAX_FREEFORM_MASK_SIZE/2)];
} freeFormExt

typedef struct dstportext {
 unsigned char type;
 unsigned char length;
 unsigned char portNum[2];
} dstPortExt;

typedef struct dstportrangeext {
 unsigned char type;
 unsigned char length;
 struct portRangeEntry portRange;
} dstPortRangeExt;

All operating system calls of SunLabs Mobile IP is included in a separate source module
called mipmodlinux.c This file was changed to include the following functions,

int deleteFilters(int markValue, char *ifaceName)

This function deletes a reverse filter that has the given mark value. Interface name is
also provided to assist the deletion.

int applyFilter(char *ifcName, char *fltStr, u32 routerAddr)

This function applies all the Reverse Filters related to all the active interfaces. Active
interfaces are the interfaces which are currently bound through a Binding with the
Home Agent.

int flushRouteCache()

This function flushes the route cache to make sure that the newly set Reverse Filters
get effected immediately.

Detailed Home Agent Changes

SunLabs Mobile IP Agent software can act as a Foreign Agent or as a Home Agent. Filters
for Mobile IP has been implemented on the Home Agent part of the software. The Agent
software used the same data structures as what the Mobile Node used. But, the Agent had to
keep the Filters for not just one Mobile Node, but many. So the following data structure was
introduced to hold Filters of each Mobile Node.

Filters for Mobile IP

Page 17

10 July 2003 ComNets, University of Bremen

typedef struct boundmn {
 u32 mnAddr;
 int mnFilterCount;
 Filter mnFilters[MAX_FILTERS];
 int filtersChanged;
} BoundMN;

The mnFilters, in this structure was the link to the filters of each Mobile Node.

When filters of a mobile node is updated, the Filtering Agent will only apply filters that were
changed. To identify what filters changed, the following operations structure is used.

typedef struct filteropentry {
 int opCode; // 1 = APPLY filter, 2 = DELETE filter
 u32 boundCoA;
 int seq;
 int markValue;
} FltOpEntry;

typedef struct mnfltopentry {
 u32 mnaddr;
 FltOpEntry fltOpTable[MAX_FILTERS];
} MNFltOpEntry;

As indicated above, the first activity of the Agent software is to extract, update & display the
filters. The following newly introduced functions in a new source file called filters.c,
perform these activities.

int extractFilters(int extCnt, unsigned char extType[], unsigned char
*extIdx[], BoundMN bmn[], int *bts, u32 mnAddr, u32 coAddr)

This function extracts the filters contained in a Registration Request and updates them
in the data structures.

void dispFilters(BoundMN bmn[], u32 mnAddr)

Function to display the filters on the screen.

int haveFiltersChanged(BoundMN bmn[], u32 mnAddr)

This functions checks the modification flag in the filter data structures to determine if
the filters belonging to a Mobile Node has been changed or not. This is required to
display and apply the filters.

int arrangeFiltersSequentially(BoundMN [], u32)
int sortFilters(BoundMN [], u32)

The received filters within a Registration Request may have different Index numbers
and might not be in an ascending order. Ordering and sorting of the filter list is
required after a change in the filter list occurs. These 2 functions perform the
activities of ordering and sorting.

int addFilterTableEntry(BoundMN bmn[], u32 mnAddr)

This is function adds a blank entry to hold filters of a bound Mobile Node. This
function performs this insertion before updating the received filters.

Filters for Mobile IP

Page 18

10 July 2003 ComNets, University of Bremen

int removeSelectedFilters(BoundMN bmn[], int *bmnCnt, u32 mnAddr, u32
coAddr)

This function performs the removal of the filters related to a specific binding. This is
required when a binding of a Mobile Node goes down.

void setFilterOp(int opCode, u32 mnAddr, u32 coAddr, int seq, int
markValue, int pos)

When filters are changed, only the changed filters need to be applied. This method
updates an array with the changed filters. These are picked up by the filter application
function.

Once the filters are received and updated or updated due to a invalidation of a binding, filters
will be applied on the Home Agent. Application of filters refer to the setting of routing on the
Home Agent to identify Mobile Node destined IP traffic based on the specified filters and to
place them in the appropriate network interface (i.e. tunnels created for each binding).
Following are the newly introduced functions that perform this task.

int HAapplyFilters(BoundMN bmn[], HaBindingEntry habe[], u32 mnAddr)

Function that calls the OS specific routines to set the routing entries to filter the
different IP packets based on the specified filters. This function goes through the
operations array, identifying the changed filters and creating a string with the filter
information. That string is passed to the OS specific routines.

u32 getDefaultFilterCoA(BoundMN bmn[], HaBindingEntry habe[], u32 mnAddr)

When a IP packet does not conform to any filter, it has to be sent through the Default
Filter. The Default Filter is the Filter with the lowest priority (i.e. the highest Index
number). This funcion finds the Default Filter based on this criteria. This function is
called by the filter application function.

int getMarkValue(u32 mnAddr, int fltSeq)

Filters for Mobile IP is implemented using a mechanism that identifies a flow using a
mark. This function return the mark associated for filter belonging to a specific
mobile node.

void freeMarkValue(u32 mnAddr, int fltSeq)

This function releases a mark used to identify a filter.

int removeSelectedFilters(BoundMN bmn[], int *bmnCnt, u32 mnAddr, u32
coAddr)

Function to remove filters related to a specific binding. This function places delete
requests on the operations array, which are effected when application of filters occur.

Application of filters require the call of OS specific functions. These functions are kept in a
source file called mipmodlinux.c This souce file was changed to include the following
functions to perform the actual OS level calls to set the filters.

int applyFilter(u32 mnaddr, u32 coaddr, char *fltStr)

This function applies one filter for the given Mobile Node. This application can a
delete or a creation. All details related to the filter are sent as a string.

int flushRouteCache()

Filters for Mobile IP

Page 19

10 July 2003 ComNets, University of Bremen

Function to flush the routing cache after setting the filters. This is required to effect
the operation of the filters immediately.

Reverse Filters with Filters for Mobile IP

Filters for Mobile IP specifies the filtering of flows that is to be effected at a Binding Agent.
Therefore, Filters for Mobile IP set filters only for IP traffic which are destined to the mobile
node. It does not specify how the out going traffic from the mobile node should be sent. This
is considered as being a vendor specific activity.

Logically, the mobile node should use the same outward path for any inward flow. This
means that if a filter indicates that all packets from detination 134.102.158.1 are to be recived
over the GPRS connection of a mobile node, then the same path should be taken when
sending traffic to the given address. Setting such a filtering behaviour is termed as Reverse
Filtering.

This implementation consideres the setting up of reverse filters and uses the inverted
condition to effect a reverse of a filter. For example, if a filter is set to have the condition
source network to be 134.102.158.0/24, then a reverse filter will be created at the mobile node
that says to use the same path for traffic that have the destination network as
134.102.158.0/24.

Effecting Filter Behaviour on Linux

This implementation of Filters for Mobile IP uses IPTABLES and IPROUTE2 functions to
effect the filters on the Linux O/S. IPTABLES is used to mark packets based on the filters
and IPROUTE2 is used to route packets to the respective CoA, once they are marked.

IPTABLES

IPTABLES is a Linux based route manipulation tool that allows the checking of IP packets at
a computer and then, to make changes to it’s journey. This tool can manipulate IP packets
that are arriving from outside the machine as well as any packet that is generated inside the
computer. This facility uses a set of manipulation paths (called chains) to identify different
traffic flows. These chains are as follows.

• As soon as it comes to a computer (INPUT)
• When a packet is generated by the computer (OUTPUT)
• Before checking how an IP packet needs to be routed (PREROUTING)
• After checking the routing table (POSTROUTING)
• Before forwarding an IP packet out of the computer (FORWARD)

It provides a set of tables to which these manipulation possibilities are associated. To
manipulate an IP packet, it can check different information contained in the packet (such as
destination IP address, TOS values, etc.) and, can make changes to some of this information
in the packet (such as TOS, marking, etc). A user can avail the services of IPTABLES by
running the function iptables at the command line. Filters for Mobile IP uses the marking

Filters for Mobile IP

Page 20

10 July 2003 ComNets, University of Bremen

feature of IPTABLES to mark packets when it conforms to a specific criteria. The numbers
used to mark a packet start from 1 and each flow identified by a filter is marked with these
numbers.

Filters for Mobile IP settings at the Filtering Agent uses the mangle table and the
PREROUTING capability of IPTABLES. The PREROUTING chain is used, as the Filtering
Agent simply transfers the packet destined to a mobile node. Reverse filters (for outward IP
traffic) use the mangle table and the OUTPUT chain as the IP packets are generated at the
mobile node. The SunLabs Mobile IP software has been changed to use the following
IPTABLES functionality.

• iptables -t mangle -A PREROUTING
• iptables -t mangle -A INPUT
• iptables -t mangle -D

IPROUTE2

IPROUTE2 is the second generation functionality made available on the Linux kernel to
manipulate the IP environment. This functionality introduces new possibilities on the kernel
including such things as rule based routing, multiple routing tables, etc. A user can avail
these functions through the use of the ip command. This command has a number of switches
that allows us to set the IP environment to cater to different requirements.

Filters for Mobile IP requires that an Agent be able to route data according to a specified set
of conditions. The IPTABLES function marks a packet when it conforms to some condition
and using IPROUTE2 functionality, these marked packets are sent to the mobile node base
through the related CoA. SunLabs Mobile IP has been changed to use the following functions
of the IPROUTE2,

• ip route
• ip rule

The ip rule function allows the setting of a rule to check whether a packet contains a specific
mark. The ip route function allows the definition of new routing tables. Using these 2
commands we could define conditions, that when satisfied, could use different routing tables.

A routing table is a table that provides different routing paths based on the destination address
of an IP packet. With IPROUTE2, these routing tables can be given names and these names
should be placed in the file /etc/iproute2/rt_tables.

Example of Calls to IPTABLES and IPROUTE2

Considering an example, following is a filter and how it is effected using
IPTABLES/IPROUTE2 commands.

Filter Information
Registration Request
 Home IP Address 134.102.158.22

Filters for Mobile IP

Page 21

10 July 2003 ComNets, University of Bremen

 Care-of-Address 134.102.158.89
Filters
 Seq 0
 Target Accept
 Action Append
 Filter Modules
 Module 0
 Type Source Address
 IP Address 134.102.186.10

 Module 1
 Type Behaviour Aggregate
 TOS Value 04

 Seq 1
 Target Accet
 Action Append
 Filter Modules
 Module 0
 Type Source Network
 Source Network 134.102.20.20/24

When these filter details are received at the Home Agent, the following ommand would be
issued.

echo 167 mn134.102.158.22-134.102.158.89 > /etc/iproute2/rt_tables

This statement inserts the table name in the /etc/iproute2/rt_tables file. This table
name, ‘mn134.102.158.22-134.102.158.89’, will be used to associate all the routing
entries related to one binding of a Mobile Node.

iptables -t mangle -A PREROUTING -v -d 134.102.158.22 -s 134.102.186.10 -m
tos --tos 0x04 -j MARK --set-mark 1

This command adds a condition to check if an IP packet conforms to the condition
specified in the first filter (source address and TOS value). If the packet conforms to
this multi-criteria condition, it is marked with the number 1.

ip rule add fwmark 1 to 134.102.158.22 table mn134.102.158.22-
134.102.158.89

This command sets the rule that allows the marked packet (by mark number 1) to find
the correct routing table.

iptables -t mangle -A PREROUTING -v -d 134.102.158.22 -s 134.102.20.20/24 -
j MARK --set-mark 2

This command sets the second filter (source network). If a packet conforms to this
condition, it is marked with number 2

ip rule add fwmark 2 to 134.102.158.22 table mn134.102.158.22-
134.102.158.89

This command sets the rule that allows the packets marked by the second filter, to find
the correct routing table.

Filters for Mobile IP

Page 22

10 July 2003 ComNets, University of Bremen

ip route add default dev tunl1 table mn134.102.158.22-134.102.158.89
This command creates the routing table associated with a specific binding of a Mobile
Node.

The SunLabs Mobile IP software was changed to use the following versions of IPTABLES
and IPROUTE2.

• IPROUTE2 - Version iproute2-ss000305
• IPTABLES - Version iptables v1.2.7a

Please refer to Linux documentation on how to install IPTABLES and IPROUTE2. Make
sure, that the correct Kernel setings are done to activate the diferent filtering posibilities
related to IPTABLES and IPROUTE2.

Current Status

The IPTABLES together with IPROUTE2 facility on Linux allows the easy implementation
of a considerable amount of the filters. Following are the filters that were implemented.

• Behaviour Aggregate (TOS)
• Protocol
• Source IP Address
• Source Network
• Source Port
• Source Port Range
• Destination Port
• Destination Port Range

The Free Form filter which was not implemented, require to check arbitrary locations in an IP
packet. This means that a module should be attached to IPTABLES function to perform this
checking. The next activity in accomodating Filters for Mobile IP in the SunLabs software is
to write this module.

Filters for Mobile IP

Page 23

10 July 2003 ComNets, University of Bremen

Configuring Filters in SunLabs Mobile IP

SunLabs Mobile IP contains 2 configuration files, one each for the Agent and the Mobile
Node software. They are

• /etc/mipmn.conf – for the Mobile Node
• /etc/mipagent.conf – for the Agent

To instruct the Mobile Node about the filters, a new configuration file has been introduced to
the Mobile Node. This file is named /etc/mipmn-filters.conf. This file is read by the Mobile
Node just after reading the standard configuration file (mipmn.conf). The decision to read the
filter configuration file is done only after investigating the FilterStatus variable in
mipmn.conf. Following are the list of information that needs to be placed in this file.

• Number of Filters
• Filter Sequence
• Interface Name
• Action
• Target
• Number of Filter Modules
• Type of Filter Extension
• Value(s) related to the Filter Type

Filter Sequence
This is the Index number assigned to the Filter. A Filter can have an Index number ranging
between 0 – 255.

Interface Name
This is the name assigned to the mobility supporting network interface on the Mobile Node.
This can have names such as eth0, eth1, ppp0, etc.

Action
When a Filter is received, the Home Agent must know what should be done with this filter, in
respect of the Filter list it maintains for a Mobile Node. Following are the possible values that
specifiy this action.

0 Insert at the beginning of existing filters for the registered address
1 Append at the end of existing filters for the registered address
2 Delete from an exiting filter (requires the Seq i.e. Index)
3 Replace entry in an existing filter (requires the Seq i.e. Index)
4 Flush all filter entries for address

Target
When an IP packet satisfies the conditions of a Filter, Filters for Mobile IP requires that we
state what action we take. The possible Targets and their values are,

Filters for Mobile IP

Page 24

10 July 2003 ComNets, University of Bremen

0 Drop incoming packets without notification
1 Reject incoming packets with notification
2 Accept incoming packets
3 Accept incoming packets but avoid route optimization
4 Masquerade

Type of Filter Extensions
Each Filter type is identified by an unique number. These numbers are a set of temporary
numbers. The actual numbers would be assigned by IANA, later. Following are the current
Filter type numbers.

67 Behavior Aggregate Filter Extension
68 Protocol Extension
69 Source Address Extension
70 Source Network Extension
71 Source Port Extension
72 Source Port Range Extension
73 Free-Form Extension
76 Destination Port Extension

 77 Destination Port Range Extension

Value(s) Related to the Filter Types
Each Filter type has different valued parameters, which are specific to that each filter type.
Following are the list of these Filters and some sample values.

Type DSCP Entry(6 bit value)
67 22

Filter Type Protocol Number
68 4

Filter Type Source IP Addresse
69 134.102.158.1

Filter Type Source IP Addresse & Source IP Address Mask

 70 134.102.158.65 255.255.255.248

Filter Type Port Number
71 8819

Filter Type Source Port Number Range(Min - Max)
72 9002 9004

Filter Type Offset Value & Mask (value & mask should be in hex)
73 8 ABCDEF FFFFFF

Filter Type Port Number
76 7200

Filters for Mobile IP

Page 25

10 July 2003 ComNets, University of Bremen

Filter Type Source Port Number Range(Min - Max)
77 8002 8004

Filters for Mobile IP

Page 26

10 July 2003 ComNets, University of Bremen

References

[1] C. E. Perkins. IP Mobility Support. Request for Comment (Proposed Standard) 2002,
Internet Engineering Task Force, Oct, 1996.

[2] C. E. Perkins. Mobile IP, Design Principles and Practices. Wireless Communications
Series. Addison-Wesley, 1997.

[3] N.A. Fikouras, A.J. Koensgen, C. Goerg, W. Zirwas, M. Lott. Filters for Mobile IP
Bindings (NOMAD).draft-nomad-mobileip-filters-02.txt, IETF, July 2002.

[4] E. Gustsfsson, A. Jonsson and C. Perkins. Mobile IP Regional Registration. (work in
progress), draft-ietf-mobileip-reg-tunnel-06.txt, IETF, Oct 2002.

[5] N.A. Fikouras and C. Görg, “Performance comparison of hinted and advertisement based
movement detection methods,” paper presented at the 7th European conference on Fixed
Radio Systems and Networks, Dresden, Germany, Sep. 2000.

[6] N. A. Fikouras, A. J. Könsgen, and C. Görg, “Accelerating mobile IP hand-offs through
link-layer information,” Proceedings of the International Multi conference on Measurement,
Modeling, and Evaluation of Computer-Communication Systems (MMB), Aachen, Germany,
Sep. 2001.

Filters for Mobile IP

Page 27

10 July 2003 ComNets, University of Bremen

Appendix

Sample Agent Configuration File

/etc/mipagent.conf

Sample configuration file for mobility agents. Lines starting with the
hash
character are treated as comments. Blank lines are ignored.
It contains six main parts (the following ordering must be preserved):
1. version indicator
2. (optional) attribute value pairs
3. number of mobility supporting interfaces
4. configuration info for each mobility supporting interface
5. number of mobile nodes to which HA services are offered.
6. configuration information for each such mobile node.

Note that part 2 is optional and if item 5 is zero, item 6 need
not be present.

version number for the configuration file. This line is required
and must be the first non-comment/non-blank line.

version 1

Other (optional) attribute-value pairs. Note that the attribute names are
case insensitive. Currently the following attributes are allowed:

debuglevel 0-3 (controls verbosity of debug messages, 0=severe
problems, 1=unexpected behavior, 2=important
events
3=complete trace including messages)
IDfreshnessSLack n (When using timestamps for replay protection,
this is the maximum skew tolerated in timestamp
comparisons).
regLifetime n (Lifetime advertised in the mobility extension)
advLifetime n (Lifetime advertised in the RFC1256 portion)
periodicInterval n (Controls the frequency of advertisements and
the granularity of other internal timers, e.g.
aging of various bindings etc). This interval
must be less than 1/3 advLifeTime.
advertiseOnBcast 1 (If 1, advertisements are sent on 255.255.255.255
rather than 224.0.0.1)

The agent program initializes appropriate default values for these
parameters in agent.c (near the start).

debuglevel 3
IDfreshnessSlack 300
reglifetime 1000
advlifetime 3
periodicInterval 1
granularity 100000
advertiseOnBcast 0

Filters for Mobile IP

Page 28

10 July 2003 ComNets, University of Bremen

number of mobility supporting interfaces
1

one line for each interface containing:
interface name, addr, netmask, advertised services flag, and prefix
flag
The advertised services flag should be a hexadecimal number obtained
by the logical ORing of some combination of the following.

ADV_IS_HOME_AGENT 0x20
ADV_IS_FOREIGN_AGENT 0x10
ADV_MIN_ENCAP 0x08
ADV_GRE_ENCAP 0x04
ADV_VJ_COMPRESSION 0x028

It is invalid to set any service flag which is not currently implemented.
The prefix flag is either 0 or 1 and controls whether prefix length
extensions are included in agent advertisements (1 = include).
In the following example, advertisements sent out on le0 offer
both home agent and foreign agent services (0x20 | 0x10 = 0x30)
and prefix length extensions are included.
eth1 134.102.158.17 255.255.255.248 00:04:76:11:DF:98 20 1

number of supported mobile nodes
1

one line for each supported mobile node containing:
addr, HA's addr on home network, SPI, Replay Prot code, key len, and key
The replay protection code determines the replay protection
algorithm used (0=NONE, 1=TIMESTAMPS, 2=NONCES). In the following
example, SPI is 1, NONCES are used for replay protection and the
key is 16 byte long with each byte being 0x11 (i.e. hexadecimal 11).
134.102.158.22 134.102.158.17 257 0 16
11111111111111111111111111111111

Filters for Mobile IP

Page 29

10 July 2003 ComNets, University of Bremen

Sample Mobile Node Configuration Files

/etc/mipmn.conf

Sample configuration file for mobile nodes. Lines starting with the hash
character are treated as comments. Blank lines are ignored.
It contains six main parts (the following ordering must be preserved):
1. version indicator
2. (optional) attribute value pairs
3. Home Address, HomeNetmask and default routers at home
4. number of home agents
5. configuration info for each home agent
6. Firewall traversal information

version number for the configuration file. This line is required
and must be the first non-comment/non-blank line.
version 1

Other (optional) attribute-value pairs. Note that the attribute names are
case insensitive and the program uses appropriate default values for
attributes not specified in this configuration file. The unit of time is
seconds. Currently the following attributes are allowed:

debuglevel 0-3 (controls verbosity of debug messages, 0=severe
problems, 1=unexpected behavior, 2=important
events, 3=complete trace including messages)
periodicInterval n (Controls the granularity of various internal
internal timers, e.g. aging of local mobility
agent table)
agentSolicitThreshold t1 (If a mobile node hasn't heard from an agent in
the last t1 seconds, it explicitly solicits an
agent advertisement as a means ensuring that
the agent is indeed unreachable)
agentExpireThreshold t2 (If a mobile node hasn't heard from an agent in
the last t2 (> t1) seconds, it considers that
agent unusable).
ifacePollThreshold n (A mobile node checks its list of available
network interfaces, once every n seconds.
regLifetime n (Default registration lifetime requested in
the absence of any agent advertisements).
regRoundTrip n (Very rough round trip estimate for scheduling
retransmissions)
regflags n (Discretionary flag values to be used in a
registration request)

The regflags value should be a hexadecimal number obtained
by the logical ORing of some combination of the following.
REQUEST_SIMULTANEOUS_BINDING 0x80
REQUEST_BROADCAST_DATAGRAMS 0x40
REQUEST_MINIMAL_ENCAPSULATION 0x10
REQUEST_GRE_ENCAPSULATION 0x08
REQUEST_VJ_COMPRESSION 0x40

haCooloffPeriond n (Time period for which to mark home agent
unusable if a registration request is
is rejected by home agent with a reason that
can not be immediately fixed)
faCooloffPeriond n (Time period for which to mark foreign agent
unusable if a registration request is

Filters for Mobile IP

Page 30

10 July 2003 ComNets, University of Bremen

is rejected by foreign agent with a reason that
can not be immediately fixed)
IDfreshnessSLack n (When using timestamps for replay protection,
this is the maximum skew tolerated in timestamp
comparisons).

ignoreIfaces ifname1 ifname2
(List of interfaces that should be ignored
by the mobile node. These interfaces are not
monitored for agent advertisements or
for a potential co-located address).

retransmissionPolicy x1 x2 (Multiples of estimated roundtrip times
after which successive retransmissions of
a registration request are sent, e.g. the
first retransmission occurs at x1 times
regRoundTrip and if no reply arrives in
the intervening period, the second
occurs after another x2 times regRoundTrip
and so on upto a maximum.

renewalPolicy x1 x2 (Accepted, renewable registrations are
renewd when remaining time becomes x1
times the granted time. Another renewal
is sent, if necessary, when remaining
time drops to x2 times the originally
granted lifetime and so on.

FilterStatus n (0 indicates no filters, 1 indicates filters
available in the file /etc/mipmn-filters.conf"

debuglevel 3
periodicInterval 1
agentSolicitThreshold 2
agentExpireThreshold 3
ifacePollThreshold 1
regLifetime 1000
regRoundTrip 5
regFlags 128
haCooloffPeriod 30
faCooloffPeriod 30
IDfreshnessSlack 300
retransmissionPolicy 2 4 8
renewalPolicy 0.5 0.25 0.1
movementDetection 2
#HApriority 0
EagerSoliciting 1
#LazySoliciting 0
FilterStatus 1

Information about the mobile node's home network
<Home Address of Mobile node> <Netmask> <default routers>
<default routers> is either a list of IP addresses in dotted decimal or
the keyword "discover" (without quotes).
NOTE: Currently, only an explicit list of routers is supported. To be
safe, we recommend that you specify only one default router
instead of a list. Different operating systems deal differently
with multiple default routing entries.
MODIFY THIS FOR YOUR LOCAL ENVIRONMENT
134.102.158.78 255.255.255.248 134.102.158.73

Filters for Mobile IP

Page 31

10 July 2003 ComNets, University of Bremen

Number of home agent entries (entries beginning with a dotted decimal
IP address specify a unique home agent, entries beginning with the
keyword "default", without quotes, correspond to dynamically discovered
home agents.
MODIFY THIS FOR YOUR LOCAL ENVIRONMENT
1

One line for each home agent
HA's addr on home network, SPI, Replay Prot code, key len, and key
HA's addr is in decimal format or "default"
The replay protection code determines the replay protection
algorithm used (0=NONE, 1=TIMESTAMPS, 2=NONCES). In the following
example, when talking to home agent 129.146.122.191, the mobile node
uses SPI 257, NONCE-based replay protection and a 16 byte long key
with each byte being 0x11 (i.e. hexadecimal 11). In addition, the mobile
node can dynamically discover other home agents and for them it uses
SPI 570, TIMESTAMP based replay protection, 16-byte key with each byte
equal to 0x22 (i.e. decimal 34).
129.146.122.191 257 2 16 11111111111111111111111111111111
default 570 1 16 22222222222222222222222222222222
Make sure that the home agents have been appropriately configured
to support this mobile node and both use the same set of security
parameters for mutual communication, i.e. the home agent
129.146.122.191 should be configured to support 129.146.122.195 as
a mobile node and use the same SPI, replay protection method and
shared secret as specified for 129.146.122.191 in this file.
MODIFY THIS FOR YOUR LOCAL ENVIRONMENT
134.102.158.73 257 0 16 11111111111111111111111111111111

Filters for Mobile IP

Page 32

10 July 2003 ComNets, University of Bremen

/etc/mipmn-filter.conf

This file specifies the different filters that are associated
with each of the bindings (interfaces)

Values :

Filter types
67 = Behavior Aggregate Filter Extension
68 = Protocol Extension
69 = Source Address Extension
70 = Source Network Extension
71 = Source Port Extension
72 = Source Port Range Extension
73 = Free-Form Extension
76 = Destination Port Extension
77 = Destination Port Range Extension

#Admissible values for the Action(ACT) field are as follows:
Value Filter Management
0 Insert at the beginning of existing
filters for the registered address
1 append at the end of existing filters
for the registered address
2 Delete from an exiting filter
3 Replace entry in an existing filter
4 Flush all filter entries for address

#Admissible values for the Target (TG) field are as follows:
Value Filter Target
0 Drop incoming packets without notification
1 Reject incoming packets with notification
2 Accept incoming packets
3 Accept incoming packets but avoid route
optimization
4 Masquerade

#Number of filters
#-----------------
 7

Seq Interface Action Target Filter Modules
--- --------- ------ ------ --------------
 0 eth0 1 2 2

Type DSCP Entry(6 bit value)
---- -----------------------
 67 22

Type Protocol Number
---- ---------------
 68 4

Seq Interface Action Target Filter Modules
--- --------- ------ ------ --------------
 1 eth0 1 2 1

Filters for Mobile IP

Page 33

10 July 2003 ComNets, University of Bremen

Type Source IP Addresse
---- ------------------
 69 134.102.158.1

Seq Interface Action Target Filter Modules
--- --------- ------ ------ --------------
 2 eth0 1 2 1

Type Port Number
---- ------------
 71 8819

Seq Interface Action Target Filter Modules
--- --------- ------ ------ --------------
 3 eth1 1 2 1

Type Source IP Addresse & Source IP Address Mask
---- --
 70 134.102.158.65 255.255.255.248

Seq Interface Action Target Filter Modules
--- --------- ------ ------ --------------
 4 eth1 1 2 1

Type Port Number
---- -----------
 71 8081

Seq Interface Action Target Filter Modules
--- --------- ------ ------ --------------
 5 eth1 1 2 1

Type Source Port Number Range(Min - Max)
---- -----------------------------------
 72 9002 9004

Seq Interface Action Target Filter Modules
--- --------- ------ ------ --------------
 6 eth1 1 2 1

Type Offset Value & Mask (value & mask should be in hex)
---- ------ --
 73 8 ABCDEF FFFFFF

#---

